Suppr超能文献

量子效率接近 1 的光催化水分解。

Photocatalytic water splitting with a quantum efficiency of almost unity.

机构信息

Research Initiative for Supra-Materials, Shinshu University, Nagano, Japan.

Graduate School of Science and Technology for Innovation, Yamaguchi University, Ube, Japan.

出版信息

Nature. 2020 May;581(7809):411-414. doi: 10.1038/s41586-020-2278-9. Epub 2020 May 27.

Abstract

Overall water splitting, evolving hydrogen and oxygen in a 2:1 stoichiometric ratio,  using particulate photocatalysts is a potential means of achieving scalable and economically viable solar hydrogen production. To obtain high solar energy conversion efficiency, the quantum efficiency of the photocatalytic reaction must be increased over a wide range of wavelengths and semiconductors with narrow bandgaps need to be designed. However, the quantum efficiency associated with overall water splitting using existing photocatalysts is typically lower than ten per cent. Thus, whether a particulate photocatalyst can enable a quantum efficiency of 100 per cent for the greatly endergonic water-splitting reaction remains an open question. Here we demonstrate overall water splitting at an external quantum efficiency of up to 96 per cent at wavelengths between 350 and 360 nanometres, which is equivalent to an internal quantum efficiency of almost unity, using a modified aluminium-doped strontium titanate (SrTiO:Al) photocatalyst. By selectively photodepositing the cocatalysts Rh/CrO (ref. ) and CoOOH (refs. ) for the hydrogen and oxygen evolution reactions, respectively, on different crystal facets of the semiconductor particles using anisotropic charge transport, the hydrogen and oxygen evolution reactions could be promoted separately. This enabled multiple consecutive forward charge transfers without backward charge transfer, reaching the upper limit of quantum efficiency for overall water splitting. Our work demonstrates the feasibility of overall water splitting free from charge recombination losses and introduces an ideal cocatalyst/photocatalyst structure for efficient water splitting.

摘要

使用颗粒光催化剂实现水的总体分解,以 2:1 的化学计量比产生氢气和氧气,是实现可扩展且经济可行的太阳能制氢的一种有潜力的方法。为了获得高太阳能转换效率,必须提高光催化反应的量子效率,跨越宽波长范围,并设计具有窄带隙的半导体。然而,使用现有光催化剂进行总体水分解的量子效率通常低于 10%。因此,颗粒光催化剂是否能够使大大吸热的水分解反应的量子效率达到 100%,仍然是一个悬而未决的问题。在这里,我们使用经过改良的掺铝钛酸锶(SrTiO:Al)光催化剂,在 350 至 360 纳米波长范围内,实现了高达 96%的外部量子效率的总体水分解,这相当于近 100%的内部量子效率。通过使用各向异性电荷输运,在半导体颗粒的不同晶面上选择性地光沉积析氢反应的共催化剂 Rh/CrO(参考文献)和析氧反应的 CoOOH(参考文献),分别促进了氢气和氧气的产生。这使得多次连续的正向电荷转移而没有反向电荷转移,达到了总体水分解的量子效率上限。我们的工作证明了在没有电荷复合损失的情况下实现总体水分解的可行性,并为高效水分解引入了理想的共催化剂/光催化剂结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验