Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic.
Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 2, 461 17 Liberec 1, Czech Republic.
Sci Rep. 2023 Jul 22;13(1):11871. doi: 10.1038/s41598-023-38764-9.
Membrane surface treatment to modify anti-(bio)fouling resistivity plays a key role in membrane technology. This paper reports on the successful use of air-stimulated surface polymerization of dopamine hydrochloride incorporated ZnO nanoparticles (ZnO NPs) for impeding the intrinsic hydrophobicity and low anti-(bio)fouling resistivity of polytetrafluoroethylene (PTFE) hollow-fiber membranes (HFMs). The study involved the use of pristine and polydopamine (Pdopa) coated PTFE HFMs, both with and without the presence of an air supply and added ZnO NPs. Zeta potential measurements were performed to evaluate the dispersion stability of ZnO NPs prior to immobilization, while morphological characterization and time-dependency of the Pdopa growth layer were illustrated through scanning electron microscopy. Pdopa surface polymerization and ZnO NPs immobilization were confirmed using FT-IR and EDX spectroscopy. Transformation of the PTFE HFM surface features to superhydrophilic was demonstrated through water contact angle analysis and the stability of immobilized ZnO NPs assessed by ICP analysis. Anti-fouling criteria and (bio)fouling resistivity performance of the surface-modified membranes were assessed through flux recovery determination of bovine serum albumin in dead-end filtration as well as dynamic-contact-condition microbial evaluation against Staphylococcus spp. and Escherichia coli, respectively. The filtration recovery ratio and antimicrobial results suggested promising surface modification impacts on the anti-fouling properties of PTFE HFM. As such, the method represents the first successful use of air-stimulated Pdopa coating incorporating ZnO NPs to induce superhydrophilic PTFE HFM surface modification. Such a method can be extended to the other membranes associated with water treatment processes.
膜表面处理通过改变抗(生物)污染电阻率在膜技术中起着关键作用。本文报道了成功使用盐酸多巴胺(dopamine hydrochloride)空气刺激表面聚合掺入氧化锌纳米粒子(ZnO NPs)来阻碍聚四氟乙烯(PTFE)中空纤维膜(HFMs)的固有疏水性和低抗(生物)污染电阻率。该研究涉及使用原始和聚多巴胺(Pdopa)涂覆的 PTFE HFMs,以及有无空气供应和添加 ZnO NPs 的情况。在固定化之前,通过zeta 电位测量评估了 ZnO NPs 的分散稳定性,同时通过扫描电子显微镜说明了 Pdopa 生长层的形态特征和时间依赖性。通过傅里叶变换红外光谱(FT-IR)和能量色散 X 射线光谱(EDX)光谱证实了 Pdopa 表面聚合和 ZnO NPs 的固定化。通过水接触角分析证明了 PTFE HFM 表面特征向超亲水的转变,通过 ICP 分析评估了固定化 ZnO NPs 的稳定性。通过死端过滤中牛血清白蛋白的通量恢复测定以及分别针对金黄色葡萄球菌和大肠杆菌的动态接触条件微生物评估,评估了表面改性膜的抗污染标准和(生物)污染电阻率性能。过滤恢复比和抗菌结果表明,PTFE HFM 的抗污染性能的表面改性具有良好的效果。因此,该方法代表了首次成功使用空气刺激的 Pdopa 涂层结合 ZnO NPs 来诱导超亲水 PTFE HFM 表面改性。这种方法可以扩展到与水处理过程相关的其他膜。