Mondal Arnab, Devine Ryan, Estes Lori, Manuel James, Singha Priyadarshini, Mancha Juhi, Palmer Marley, Handa Hitesh
School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA.
School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA.
J Colloid Interface Sci. 2021 Mar;585:716-728. doi: 10.1016/j.jcis.2020.10.051. Epub 2020 Oct 20.
Biomedical surface-associated infections and thrombus formation are two major clinical issues that challenge patient safety and patient the fate of a medical device in the body . Single platform multifunctional surfaces are critical to address both these indwelling medical device-related problems. In this work, bio-inspired approaches are employed to fabricate a polymer composite with a versatile surface that can reduce bacterial infections and platelet adhesion in vitro. In the first bio-inspired approach, the functionality of nitric oxide (NO) produced by endothelial cell lining of blood vessels is mimicked through incorporation of S-nitroso-N-acetylpenicillamine (SNAP) within a CarboSil-2080A™ (CarboSil) polymer composite matrix. The second approach involves utilizing mussel adhesive chemistry, via polydopamine (PDA) to immobilize polytetrafluoroethylene (PTFE) particles on the polymer composite surface. The PTFE coating facilitates a decrease in wettability by making the polymer composite surface highly hydrophobic (contact angle ca. 120°). The surface of the fabricated polymer composite , CarboSil SNAP-PTFE, had a cobblestone-like structured appearance as characterized through scanning electron microscopy (SEM). Water contact angle (WCA) and surface tension measurements indicated no significant coating losses after 24 h under physiological conditions. NO surface flux was measured and analyzed for 5 days using a chemiluminescence-based nitric oxide analyzer and was found to be within the physiological range. CarboSil SNAP-PTFE reduced adhered bacteria (99.3 ± 0.5% for Gram-positive S. aureus and 99.1 ± 0.4% for Gram-negative E. coli) in a 24 h in vitro study. SEM analysis showed the absence of biofilm formation on CarboSil SNAP-PTFE polymer composites, while present on CarboSil in 24 h exposure to S. aureus. Platelet adhesion was reduced by 83.3 ± 4.5%. Overall, the results of this study suggest that a combination of NO-releasing CarboSil with PTFE coating can drastically reduce infection and platelet adhesion.
生物医学表面相关感染和血栓形成是挑战患者安全以及体内医疗设备命运的两个主要临床问题。单一平台多功能表面对于解决这两个与植入式医疗设备相关的问题至关重要。在这项工作中,采用仿生方法制备了一种具有多功能表面的聚合物复合材料,该表面在体外可减少细菌感染和血小板黏附。在第一种仿生方法中,通过在CarboSil - 2080A™(CarboSil)聚合物复合材料基质中掺入S - 亚硝基 - N - 乙酰青霉胺(SNAP)来模拟血管内皮细胞产生的一氧化氮(NO)的功能。第二种方法是利用贻贝黏附化学,通过聚多巴胺(PDA)将聚四氟乙烯(PTFE)颗粒固定在聚合物复合材料表面。PTFE涂层使聚合物复合材料表面高度疏水(接触角约为120°),从而降低了润湿性。通过扫描电子显微镜(SEM)表征,制备的聚合物复合材料CarboSil SNAP - PTFE的表面具有鹅卵石状结构外观。水接触角(WCA)和表面张力测量表明在生理条件下24小时后涂层没有明显损失。使用基于化学发光的一氧化氮分析仪对NO表面通量进行了5天的测量和分析,发现其在生理范围内。在一项24小时的体外研究中,CarboSil SNAP - PTFE减少了黏附的细菌(革兰氏阳性金黄色葡萄球菌为99.3±0.5%,革兰氏阴性大肠杆菌为99.1±0.4%)。SEM分析表明在CarboSil SNAP - PTFE聚合物复合材料上没有生物膜形成,但在暴露于金黄色葡萄球菌24小时的CarboSil上有生物膜形成。血小板黏附减少了83.3±4.5%。总体而言,这项研究结果表明,释放NO的CarboSil与PTFE涂层相结合可大幅减少感染和血小板黏附。