Singha Roy Suprobhat, Madhu Ragunath, Bera Krishnendu, Nagappan Sreenivasan, Dhandapani Hariharan N, De Aditi, Kundu Subrata
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India.
ACS Appl Mater Interfaces. 2024 Feb 7;16(5):5965-5976. doi: 10.1021/acsami.3c17540. Epub 2024 Jan 24.
The development of low-cost, efficient catalysts for electrocatalytic water splitting to generate green hydrogen is a hot topic among researchers. Herein, we have developed a highly efficient heterostructure of CoCr-LDH on NiO on nickel foam (NF) for the first time. The preparation strategy follows the simple annealing of a cleaned NF without using any Ni salt precursor, followed by the growth of CoCr-LDH nanosheets over the surface-oxidized NF. The CoCr-LDH/NiO/NF catalyst shows excellent electrocatalytic activity and stability toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in a 1 M KOH solution. For OER, only 253 mV and for HER, only 185 mV overpotentials are required to attain a 50 mA cm current density. Also, the long-term stability of both the OER and HER for 60 h proves its robustness. The turnover frequency value for the OER increased 1.85 times after the heterostructure formation compared to bare CoCr-LDH. The calculated Faradaic efficiency values of 97.4 and 94.75% for the OER and HER revealed the high intrinsic activity of the heterostructure. Moreover, the heterostructure only needs 1.57 V of cell voltage when acting as both the anode and the cathode to achieve a 10 mA cm current density. The long-term stability of 60 h for the total water-splitting process proves its excellent performance. Several systematic pre- and post-experiment characterizations prove its durable nature. These excellent OER and HER activities and stabilities are attributed to the surface-modified electronic structure and thin nanosheet-like surface morphology of the heterostructure. The thin, wide, and modified surface of the catalyst facilitates the diffusion of ions (reactants) and gas molecules (products) at the electrode/electrolyte interface. Furthermore, electron transfer from n-type CoCr-LDH to p-type NiO results in enhanced electronic conductivity. This study demonstates the effective design of a self-supported heterostructure with minimal synthetic steps to generate a bifunctional electrocatalyst for water splitting, contributing to the greater cause of green hydrogen economy.
开发用于电催化水分解以产生绿色氢气的低成本、高效催化剂是研究人员关注的热点话题。在此,我们首次在泡沫镍(NF)上的NiO上开发了一种高效的CoCr-LDH异质结构。制备策略是对清洁后的NF进行简单退火,不使用任何镍盐前驱体,然后在表面氧化的NF上生长CoCr-LDH纳米片。CoCr-LDH/NiO/NF催化剂在1 M KOH溶液中对析氧反应(OER)和析氢反应(HER)表现出优异的电催化活性和稳定性。对于OER,达到50 mA cm电流密度仅需253 mV过电位;对于HER,仅需185 mV过电位。此外,OER和HER在60小时内的长期稳定性证明了其稳健性。与裸CoCr-LDH相比,异质结构形成后OER的周转频率值增加了1.85倍。计算得出的OER和HER的法拉第效率值分别为97.4%和94.75%,揭示了异质结构的高本征活性。此外,当异质结构同时用作阳极和阴极时,只需1.57 V的电池电压就能实现10 mA cm的电流密度。全水分解过程60小时的长期稳定性证明了其优异的性能。多项系统的实验前后表征证明了其耐久性。这些优异的OER和HER活性及稳定性归因于异质结构的表面改性电子结构和薄纳米片状表面形态。催化剂薄而宽且改性的表面促进了离子(反应物)和气体分子(产物)在电极/电解质界面的扩散。此外,从n型CoCr-LDH到p型NiO的电子转移导致电子导电性增强。本研究展示了一种通过最少合成步骤有效设计自支撑异质结构以生成用于水分解的双功能电催化剂,为绿色氢能经济的伟大事业做出了贡献。