Suppr超能文献

通过高光谱成像对消费后塑料包装薄片进行多级颜色分类以优化回收过程。

Multi-level color classification of post-consumer plastic packaging flakes by hyperspectral imaging for optimizing the recycling process.

作者信息

Cucuzza Paola, Serranti Silvia, Capobianco Giuseppe, Bonifazi Giuseppe

机构信息

Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Rome, Italy.

Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Rome, Italy.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2023 Dec 5;302:123157. doi: 10.1016/j.saa.2023.123157. Epub 2023 Jul 14.

Abstract

In a circular economy perspective, the development of fast and efficient sensor-based recognition strategies of plastic waste, not only by polymer but also by color, plays a crucial role for the production of high quality secondary raw materials in recycling plants. In this work, mixed colored flakes of high-density polyethylene (HDPE) from packaging waste were simultaneously classified by hyperspectral imaging working in the visible range (400-750 nm), combined with machine learning. Two classification models were built and compared: (1) Partial Least Square-Discriminant Analysis (PLS-DA) for 6 HDPE macro-color classes identification (i.e., white, blue, green, red, orange and yellow) and (2) hierarchical PLS-DA for a more accurate discrimination of the different HDPE color tones, providing as output 14 color classes. The obtained classification results were excellent for both models, with values of Recall, Specificity, Accuracy, and F-score in prediction close to 1. The proposed methodological approach can be utilized as sensor-based sorting logic in plastic recycling plants, tuning the output based on the required needs of the recycling plant, allowing to obtain a high-quality recycled HDPE of different colors, optimizing the plastic recycling process, in agreement with the principles of circular economy.

摘要

从循环经济的角度来看,开发快速高效的基于传感器的塑料废物识别策略,不仅按聚合物类型,还按颜色进行识别,对于回收工厂生产高质量的二次原材料起着至关重要的作用。在这项工作中,利用工作在可见光范围(400 - 750纳米)的高光谱成像技术,并结合机器学习,对来自包装废物的高密度聚乙烯(HDPE)混合彩色薄片进行了同时分类。构建并比较了两种分类模型:(1)用于识别6种HDPE宏观颜色类别(即白色、蓝色、绿色、红色、橙色和黄色)的偏最小二乘判别分析(PLS - DA),以及(2)用于更精确区分不同HDPE色调的分层PLS - DA,其输出为14种颜色类别。两个模型的分类结果都非常出色,预测中的召回率、特异性、准确率和F分数值都接近1。所提出的方法可作为塑料回收工厂基于传感器的分拣逻辑,根据回收工厂的需求进行调整输出,从而获得不同颜色的高质量回收HDPE,优化塑料回收过程,符合循环经济的原则。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验