Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China.
Xiamen Key Laboratory of Chiral Drugs, School of Medicine, Xiamen University, Xiamen 361102, China.
Brain Behav Immun. 2023 Oct;113:275-288. doi: 10.1016/j.bbi.2023.07.011. Epub 2023 Jul 22.
Over the past decade, compelling genetic evidence has highlighted the crucial role of microglial dysregulation in the development of Alzheimer's disease (AD). As resident immune cells in the brain, microglia undergo dystrophy and senescence during the chronic progression of AD. To explore the potential therapeutic benefits of replenishing the brain with new microglia in AD, we utilized the CSF1R inhibitor PLX3397 to deplete existing microglia and induce repopulation after inhibitor withdrawal in 5xFAD transgenic mice. Our findings revealed the remarkable benefits of microglial repopulation in ameliorating AD-associated cognitive deficits, accompanied by a notable elevation in synaptic proteins and an enhancement of hippocampal long-term potentiation (LTP). Additionally, we observed the profound restoration of microglial morphology and synaptic engulfment following their self-renewal. The impact of microglial repopulation on amyloid pathology is dependent on the duration of repopulation. Transcriptome analysis revealed a high resemblance between the gene expression profiles of repopulated microglia from 5xFAD mice and those of microglia from WT mice. Importantly, the dysregulated neurotrophic signaling pathway and hippocampal neurogenesis in the AD brain are restored following microglial replenishment. Lastly, we demonstrated that the repopulation restores the expression of brain-derived neurotrophic factor (BDNF) in microglia, thereby contributing to synaptic plasticity. In conclusion, our findings provide compelling evidence to support the notion that microglial self-renewal confers substantial benefits to the AD brain by restoring the BDNF neurotrophic signaling pathway. Thus, targeted microglial repopulation emerges as a highly promising and novel therapeutic strategy for alleviating cognitive impairment in AD.
在过去的十年中,令人信服的遗传证据强调了小胶质细胞失调在阿尔茨海默病(AD)发展中的关键作用。作为大脑中的常驻免疫细胞,小胶质细胞在 AD 的慢性进展过程中发生萎缩和衰老。为了探索在 AD 中用新的小胶质细胞补充大脑的潜在治疗益处,我们利用 CSF1R 抑制剂 PLX3397 在 5xFAD 转基因小鼠中耗尽现有小胶质细胞,并在抑制剂撤回后诱导其再定植。我们的研究结果表明,小胶质细胞再定植对改善 AD 相关认知缺陷具有显著益处,同时伴随着突触蛋白的显著升高和海马长时程增强(LTP)的增强。此外,我们观察到小胶质细胞自我更新后其形态和突触吞噬作用得到了深刻的恢复。小胶质细胞再定植对淀粉样蛋白病理的影响取决于再定植的持续时间。转录组分析表明,来自 5xFAD 小鼠的再定植小胶质细胞和 WT 小鼠的小胶质细胞的基因表达谱之间具有高度相似性。重要的是,AD 大脑中的神经营养信号通路和海马神经发生的失调在小胶质细胞补充后得到了恢复。最后,我们证明了再定植可以恢复小胶质细胞中脑源性神经营养因子(BDNF)的表达,从而促进突触可塑性。总之,我们的研究结果提供了令人信服的证据,支持小胶质细胞自我更新通过恢复 BDNF 神经营养信号通路为 AD 大脑带来实质性益处的观点。因此,靶向小胶质细胞再定植作为一种缓解 AD 认知障碍的极具前景的新型治疗策略脱颖而出。