RaySearch Laboratories, Stockholm, Sweden.
Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Med Phys. 2023 Sep;50(9):5723-5733. doi: 10.1002/mp.16617. Epub 2023 Jul 21.
Proton arcs have shown potential to reduce the dose to organs at risks (OARs) by delivering the protons from many different directions. While most previous studies have been focused on dynamic arcs (delivery during rotation), an alternative approach is discrete arcs, where step-and-shoot delivery is used over a large number of beam directions. The major advantage of discrete arcs is that they can be delivered at existing proton facilities. However, this advantage comes at the expense of longer treatment times.
To exploit the dosimetric advantages of proton arcs, while achieving reasonable delivery times, we propose a partitioning approach where discrete arc plans are split into subplans to be delivered over different fractions in the treatment course.
For three oropharyngeal cancer patients, four different arc plans have been created and compared to the corresponding clinical IMPT plan. The treatment plans are all planned to be delivered in 35 fractions, but with different delivery approaches over the fractions. The first arc plan (1×30) has 30 directions to be delivered every fraction, while the others are partitioned into subplans with 10 and 6 beam directions, each to be delivered every third (3×10), fifth fraction (5×6), or seventh fraction (7×10). All plans are assessed with respect to delivery time, target robustness over the treatment course, doses to OARs and NTCP for dysphagia and xerostomia.
The delivery time (including an additional delay of 30 s between the discrete directions to simulate manual interaction with the treatment control system) is reduced from on average 25.2 min for the 1×30 plan to 9.2 min for the 3×10 and 7×10 plans and 5.7 min for the 5×6 plans. The delivery time for the IMPT plan is 7.9 min. When accounting for the combination of delivery time, target robustness, OAR sparing, and NTCP reduction, the plans with 10 directions in each fraction are the preferred choice. Both the 3×10 and 7×10 plans show improved target robustness compared to the 1×30 plans, while keeping OAR doses and NTCP values at almost as low levels as for the 1×30 plans. For all patients the NTCP values for dysphagia are lower for the partitioned plans with 10 directions compared to the IMPT plans. NTCP reduction for xerostomia compared to IMPT is seen in two of the three patients. The best results are seen for the first patient, where the NTCP reductions for the 7×10 plan are 1.6 p.p. (grade 2 xerostomia) and 1.5 p.p. (grade 2 dysphagia). The corresponding NTCP reductions for the 1×30 plan are 2.7 p.p. (xerostomia, grade 2) and 2.0 p.p. (dysphagia, grade 2).
Discrete proton arcs can be implemented at any proton facility with reasonable treatment times using a partitioning approach. The technique also makes the proton arc treatments more robust to changes in the patient anatomy.
质子弧通过从许多不同的方向输送质子,显示出降低危及器官(OAR)剂量的潜力。虽然大多数先前的研究都集中在动态弧(旋转过程中输送)上,但另一种方法是离散弧,其中在大量射束方向上使用分步射击输送。离散弧的主要优点是可以在现有的质子设施中进行输送。然而,这种优势是以更长的治疗时间为代价的。
为了利用质子弧的剂量学优势,同时实现合理的输送时间,我们提出了一种分区方法,其中将离散弧计划划分为子计划,以便在治疗过程中的不同分数中进行输送。
对于三名口咽癌患者,创建了四个不同的弧计划,并与相应的临床 IMPT 计划进行了比较。所有治疗计划都计划以 35 个分数进行输送,但在分数之间采用不同的输送方法。第一个弧计划(1×30)有 30 个方向要在每个分数输送,而其他计划则分为 10 和 6 个射束方向的子计划,每个子计划每第三个分数(3×10)、第五个分数(5×6)或第七个分数(7×10)输送。所有计划都根据输送时间、治疗过程中的目标稳健性、OAR 剂量和吞咽困难和口干的 NTCP 进行评估。
输送时间(包括在离散方向之间增加 30 秒的额外延迟,以模拟与治疗控制系统的手动交互)从 1×30 计划的平均 25.2 分钟减少到 3×10 和 7×10 计划的 9.2 分钟和 5×6 计划的 5.7 分钟。IMPT 计划的输送时间为 7.9 分钟。当考虑输送时间、目标稳健性、OAR 保护和 NTCP 降低的组合时,每个分数有 10 个方向的计划是首选。与 1×30 计划相比,3×10 和 7×10 计划都显示出目标稳健性的改善,同时保持 OAR 剂量和 NTCP 值几乎与 1×30 计划一样低。对于所有患者,与 IMPT 计划相比,分区计划中的 10 个方向的吞咽困难 NTCP 值较低。口干的 NTCP 降低在三个患者中的两个中可见。第一个患者的结果最佳,其中 7×10 计划的 NTCP 降低为 1.6 p.p.(口干 2 级)和 1.5 p.p.(吞咽困难 2 级)。1×30 计划的相应 NTCP 降低分别为 2.7 p.p.(口干 2 级)和 2.0 p.p.(吞咽困难 2 级)。
使用分区方法,可以在任何质子设施中以合理的治疗时间实施离散质子弧。该技术还使质子弧治疗对患者解剖结构的变化更具稳健性。