Suppr超能文献

通过多核学习表征社会和认知脑电-事件相关电位

Characterizing social and cognitive EEG-ERP through multiple kernel learning.

作者信息

Nieto Mora Daniel, Valencia Stella, Trujillo Natalia, López Jose David, Martínez Juan David

机构信息

Máquinas Inteligentes y Reconocimiento de Patrones, Instituto Tecnológico Metropolitano ITM - Medellín, Colombia.

Grupo de Investigación Salud Mental, Facultad Nacional de Salud Pública, Universidad de Antioquia UDEA - Medellín, Colombia.

出版信息

Heliyon. 2023 Jun 7;9(6):e16927. doi: 10.1016/j.heliyon.2023.e16927. eCollection 2023 Jun.

Abstract

EEG-ERP social-cognitive studies with healthy populations commonly fail to provide significant evidence due to low-quality data and the inherent similarity between groups. We propose a multiple kernel learning-based approach to enhance classification accuracy while keeping the traceability of the features (frequency bands or regions of interest) as a linear combination of kernels. These weights determine the relevance of each source of information, which is crucial for specialists. As a case study, we classify healthy ex-combatants of the Colombian armed conflict and civilians through a cognitive valence recognition task. Although previous works have shown accuracies below 80% with these groups, our proposal achieved an F1 score of 98%, revealing the most relevant bands and brain regions, which are the base for socio-cognitive trainings. With this methodology, we aim to contribute to standardizing EEG analyses and enhancing their statistics.

摘要

针对健康人群的脑电图-事件相关电位社会认知研究通常因数据质量低以及群体之间的内在相似性而未能提供显著证据。我们提出一种基于多核学习的方法,以提高分类准确率,同时保持作为核函数线性组合的特征(频段或感兴趣区域)的可追溯性。这些权重决定了每个信息源的相关性,这对专家来说至关重要。作为一个案例研究,我们通过认知效价识别任务对哥伦比亚武装冲突中的健康退伍军人和平民进行分类。尽管之前的研究表明对这些群体的准确率低于80%,但我们的方法获得了98%的F1分数,揭示了最相关的频段和脑区,这些是社会认知训练的基础。通过这种方法,我们旨在为脑电图分析的标准化和增强其统计学效力做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1466/10361029/111698af7a17/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验