Suppr超能文献

利用高频振荡和定向连接定位致痫区

Localizing epileptogenic zones with high-frequency oscillations and directed connectivity.

作者信息

Li Zhaohui, Zhang Hao, Niu Shipeng, Xing Yanyu

机构信息

School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China; Hebei Key Laboratory of information transmission and signal processing, Yanshan University, Qinhuangdao 066004, China.

School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China.

出版信息

Seizure. 2023 Oct;111:9-16. doi: 10.1016/j.seizure.2023.07.013. Epub 2023 Jul 22.

Abstract

PURPOSE

Precise localization of the epileptogenic zone (EZ) is essential for epilepsy surgery. Existing methods often fail to detect slow onset patterns or similar neural activities presented in the recorded signals. To address this issue, we propose a new measure to quantify epileptogenicity, i.e., the connectivity high-frequency epileptogenicity index (cHFEI).

METHODS

The cHFEI method combines directed connectivity and high-frequency oscillations (HFOs) to measure the epileptogenicity of regions involved in a brain network. By applying this method to stereoelectroencephalography (SEEG) recordings of 49 seizures in 20 patients, we calculated the accuracy, sensitivity, and precision with a visually identified epileptogenic zone as a reference. The performance was evaluated by the confusion matrix and the area under the receiver operating characteristic (ROC) curve.

RESULTS

Epileptic network estimation based on cHFEI successfully distinguished brain regions involved in seizure onset from the propagation network. Moreover, cHFEI outperformed other existing detection methods in the estimation of EZs in all patients, with an average area under the ROC curve of 0.88 and an accuracy of 0.85.

CONCLUSIONS

cHFEI can characterize EZ in a robust manner despite various seizure onset patterns and has potential application in epilepsy therapy.

摘要

目的

癫痫发作起始区(EZ)的精确定位对于癫痫手术至关重要。现有方法常常无法检测到记录信号中呈现的缓慢发作模式或类似的神经活动。为了解决这个问题,我们提出了一种新的衡量癫痫ogenicity的方法,即连通性高频癫痫ogenicity指数(cHFEI)。

方法

cHFEI方法结合了定向连通性和高频振荡(HFOs)来测量脑网络中相关区域的癫痫ogenicity。通过将该方法应用于20例患者的49次癫痫发作的立体脑电图(SEEG)记录中,我们以视觉识别的癫痫发作起始区作为参考,计算了准确性、敏感性和精确性。通过混淆矩阵和受试者操作特征(ROC)曲线下的面积来评估性能。

结果

基于cHFEI的癫痫网络估计成功地将癫痫发作起始涉及的脑区与传播网络区分开来。此外,在所有患者的EZ估计中,cHFEI的表现优于其他现有检测方法,ROC曲线下的平均面积为0.88,准确性为0.85。

结论

尽管存在各种癫痫发作起始模式,cHFEI仍能以稳健的方式表征EZ,在癫痫治疗中具有潜在应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验