Department of Biology, William and Mary, 540 Landrum Dr, Williamsburg, VA 23185, United States of America.
Departement Biologie, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium.
Bioinspir Biomim. 2023 Aug 31;18(5). doi: 10.1088/1748-3190/acea0e.
Ram suspension-feeding fish, such as herring, use gill rakers to separate small food particles from large water volumes while swimming forward with an open mouth. The fish gill raker function was tested using 3D-printed conical models and computational fluid dynamics simulations over a range of slot aspect ratios. Our hypothesis predicting the exit of particles based on mass flow rates, dividing streamlines (i.e. stagnation streamlines) at the slots between gill rakers, and particle size was supported by the results of experiments with physical models in a recirculating flume. Particle movement in suspension-feeding fish gill raker models was consistent with the physical principles of lateral displacement arrays ('bump arrays') for microfluidic and mesofluidic separation of particles by size. Although the particles were smaller than the slots between the rakers, the particles skipped over the vortical region that was generated downstream from each raker. The particles 'bumped' on anterior raker surfaces during posterior transport. Experiments in a recirculating flume demonstrate that the shortest distance between the dividing streamline and the raker surface preceding the slot predicts the maximum radius of a particle that will exit the model by passing through the slot. This theoretical maximum radius is analogous to the critical separation radius identified with reference to the stagnation streamlines in microfluidic and mesofluidic devices that use deterministic lateral displacement and sieve-based lateral displacement. These conclusions provide new perspectives and metrics for analyzing cross-flow and cross-step filtration in fish with applications to filtration engineering.
拉姆悬浮喂养鱼类,如鲱鱼,使用鳃耙来分离小的食物颗粒从大的水卷,而游泳前进,与一个开放的嘴。鱼鳃耙功能进行了测试使用三维打印锥形模型和计算流体动力学模拟在一系列槽的纵横比。我们的假设预测粒子的出口基于质量流量,划分流线(即停滞流线)在槽之间的鳃耙,并粒子大小的结果支持的实验与物理模型在循环水槽。悬浮喂养鱼类鳃耙模型中的粒子运动与侧向位移阵列的物理原理一致(“碰撞阵列”)用于微流控和介观流体粒子的尺寸分离。虽然粒子比鳃耙之间的缝隙小,但粒子跳过了从每个耙子下游生成的涡旋区。粒子在后部运输过程中在前面的耙子表面上“碰撞”。在循环水槽中的实验表明,分割流线和耙子表面之间的最短距离,在槽之前预测最大半径的粒子将通过槽出口的模型。这个理论上的最大半径类似于临界分离半径与参考的停滞流线在微流控和介观流控设备使用确定性侧向位移和基于筛子的侧向位移。这些结论提供了新的视角和指标来分析过滤工程中鱼类的横流和横阶过滤。