Suppr超能文献

利用锯末和塑料废料衍生的生物炭从水性基质中吸附去除环丙沙星和磺胺甲恶唑:对抗抗生素耐药性的可持续方法

Adsorptive removal of ciprofloxacin and sulfamethoxazole from aqueous matrices using sawdust and plastic waste-derived biochar: A sustainable fight against antibiotic resistance.

作者信息

Silori Rahul, Zang Jian, Raval Nirav P, Giri Balendu Shekher, Mahlknecht Jürgen, Mora Abrahan, Dueñas-Moreno Jaime, Tauseef Syed Mohammad, Kumar Manish

机构信息

Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand, 248007, India.

Department of Civil Engineering, Chongqing University, China.

出版信息

Bioresour Technol. 2023 Nov;387:129537. doi: 10.1016/j.biortech.2023.129537. Epub 2023 Jul 22.

Abstract

We produced carbon-negative biochar from the pyrolysis of sawdust biomass alone (SB) and from the co-pyrolysis of sawdust and plastic waste (SPB). The co-pyrolysis approach in this study was driven by several hypothetical factors, such as increased porosity, surface chemistry, stability, as well as waste management. We applied pyrolyzed and co-pyrolyzed biochars for the removal of ciprofloxacin (CFX) and sulfamethoxazole (SMX). Due to its more alkaline and amorphous nature, SB showed better removal efficiencies compared to SPB. The maximum removals of CFX and SMX with SB were observed as ∼95% and >95%, respectively whereas with SPB were 58.8%, and 34.9%, respectively. The primary mechanisms involved in the adsorption process were H-bonding, electrostatic and π-π electron donor-acceptor interactions. Homogenously and heterogeneously driven adsorption of both antibiotics followed the pseudo-second-order kinetic model, implying electron sharing/transfer (chemisorption) mediated adsorption. The work is highly pertinent in the context of emerging concerns related to drivers that promote antimicrobial resistance.

摘要

我们通过单独对锯末生物质(SB)进行热解以及对锯末和塑料废物进行共热解(SPB)来制备负碳生物炭。本研究中的共热解方法受几个假设因素驱动,如孔隙率增加、表面化学性质、稳定性以及废物管理。我们将热解和共热解生物炭用于去除环丙沙星(CFX)和磺胺甲恶唑(SMX)。由于SB具有更强的碱性和无定形性质,与SPB相比,其表现出更好的去除效率。SB对CFX和SMX的最大去除率分别约为95%和>95%,而SPB对CFX和SMX的去除率分别为58.8%和34.9%。吸附过程涉及的主要机制是氢键、静电和π-π电子供体-受体相互作用。两种抗生素的均相和非均相驱动吸附均遵循准二级动力学模型,这意味着吸附是由电子共享/转移(化学吸附)介导的。在与促进抗菌药物耐药性的驱动因素相关的新出现问题的背景下,这项工作具有高度相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验