Suppr超能文献

利用 MRI 视神经交叉的 delta 放射组学预测经鼻蝶内镜手术后垂体腺瘤患者的视力恢复情况。

Predicting visual recovery in pituitary adenoma patients post-endoscopic endonasal transsphenoidal surgery: Harnessing delta-radiomics of the optic chiasm from MRI.

机构信息

Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, GuoXue Alley, Chengdu, 610041, China.

Department of Radiology, West China Hospital, Sichuan University, No. 37, GuoXue Alley, Chengdu, 610041, China.

出版信息

Eur Radiol. 2023 Nov;33(11):7482-7493. doi: 10.1007/s00330-023-09963-9. Epub 2023 Jul 24.

Abstract

OBJECTIVES

To investigate whether morphological changes after surgery and delta-radiomics of the optic chiasm obtained from routine MRI could help predict postoperative visual recovery of pituitary adenoma patients.

METHODS

A total of 130 pituitary adenoma patients were retrospectively enrolled and divided into the recovery group (n = 87) and non-recovery group (n = 43) according to visual outcome 1 year after endoscopic endonasal transsphenoidal surgery. Morphological parameters of the optic chiasm were measured preoperatively and postoperatively, including chiasmal thickness, deformed angle, and suprasellar extension. Delta-radiomics of the optic chiasm were calculated based on features extracted from preoperative and postoperative coronal T2-weighted images, followed by machine learning modeling using least absolute shrinkage and selection operator wrapped with support vector machine through fivefold cross-validation in the development set. The delta-radiomic model was independently evaluated in the test set, and compared with the combined model that incorporated delta-radiomics, significant clinical and morphological parameters.

RESULTS

Postoperative morphological changes of the optic chiasm could not significantly be used as predictors for the visual outcome. In contrast, the delta-radiomics model represented good performances in predicting visual recovery, with an AUC of 0.821 in the development set and 0.811 in the independent test set. Moreover, the combined model that incorporated age and delta-radiomics features of the optic chiasm achieved the highest AUC of 0.841 and 0.840 in the development set and independent test set, respectively.

CONCLUSIONS

Our proposed machine learning models based on delta-radiomics of the optic chiasm can be used to predict postoperative visual recovery of pituitary adenoma patients.

CLINICAL RELEVANCE STATEMENT

Our delta-radiomics-based models from MRI enable accurate visual recovery predictions in pituitary adenoma patients who underwent endoscopic endonasal transsphenoidal surgery, facilitating better clinical decision-making and ultimately improving patient outcomes.

KEY POINTS

• Prediction of the postoperative visual outcome for pituitary adenoma patients is important but challenging. • Delta-radiomics of the optic chiasm after surgical decompression represented better prognostic performances compared with its morphological changes. • The proposed machine learning models can serve as novel approaches to predict visual recovery for pituitary adenoma patients in clinical practice.

摘要

目的

探讨鞍区肿瘤经蝶内镜术后视路形态学改变及视交叉 delta 放射组学特征能否预测患者术后视力恢复情况。

方法

回顾性分析 130 例经蝶内镜术后 1 年视力恢复的垂体瘤患者的临床资料,根据术后视力恢复情况将患者分为恢复组(n=87)和未恢复组(n=43)。测量患者术前及术后视交叉的形态学参数,包括视交叉厚度、变形角度和鞍上伸展度。基于术前及术后冠状位 T2 加权图像提取特征,计算视交叉 delta 放射组学特征,采用最小绝对收缩和选择算子(LASSO)结合支持向量机进行机器学习建模,通过 5 折交叉验证在开发集上构建模型,然后在测试集上进行独立验证,比较 delta 放射组学模型与联合模型(包括 delta 放射组学特征和有意义的临床及形态学参数)的预测效能。

结果

术后视交叉形态学变化不能作为预测患者视力恢复的指标。相比之下,delta 放射组学模型在预测视觉恢复方面表现良好,在开发集和独立测试集的 AUC 分别为 0.821 和 0.811。此外,联合模型(包括年龄和视交叉 delta 放射组学特征)在开发集和独立测试集的 AUC 分别为 0.841 和 0.840,预测效能最高。

结论

基于视交叉 delta 放射组学的机器学习模型可用于预测垂体瘤患者术后视力恢复情况。

临床意义

本研究基于 MRI 的 delta 放射组学模型有助于准确预测经蝶内镜术后垂体瘤患者的视力恢复情况,为临床决策提供依据,改善患者预后。

关键点

  1. 预测垂体瘤患者术后视力恢复情况很重要,但具有挑战性。

  2. 与视路形态学改变相比,手术减压后视交叉 delta 放射组学特征具有更好的预后预测价值。

  3. 所提出的机器学习模型可作为预测垂体瘤患者术后视力恢复的新方法,有助于临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6486/10598191/ffd0d8ae3e5c/330_2023_9963_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验