Suppr超能文献

一种新的资助评审评估方法:先打分,再排名。

A new approach to grant review assessments: score, then rank.

作者信息

Gallo Stephen A, Pearce Michael, Lee Carole J, Erosheva Elena A

机构信息

American Institute of Biological Sciences, Washington D.C., United States.

Department of Statistics, University of Washington, Seattle, United States.

出版信息

Res Integr Peer Rev. 2023 Jul 24;8(1):10. doi: 10.1186/s41073-023-00131-7.

Abstract

BACKGROUND

In many grant review settings, proposals are selected for funding on the basis of summary statistics of review ratings. Challenges of this approach (including the presence of ties and unclear ordering of funding preference for proposals) could be mitigated if rankings such as top-k preferences or paired comparisons, which are local evaluations that enforce ordering across proposals, were also collected and incorporated in the analysis of review ratings. However, analyzing ratings and rankings simultaneously has not been done until recently. This paper describes a practical method for integrating rankings and scores and demonstrates its usefulness for making funding decisions in real-world applications.

METHODS

We first present the application of our existing joint model for rankings and ratings, the Mallows-Binomial, in obtaining an integrated score for each proposal and generating the induced preference ordering. We then apply this methodology to several theoretical "toy" examples of rating and ranking data, designed to demonstrate specific properties of the model. We then describe an innovative protocol for collecting rankings of the top-six proposals as an add-on to the typical peer review scoring procedures and provide a case study using actual peer review data to exemplify the output and how the model can appropriately resolve judges' evaluations.

RESULTS

For the theoretical examples, we show how the model can provide a preference order to equally rated proposals by incorporating rankings, to proposals using ratings and only partial rankings (and how they differ from a ratings-only approach) and to proposals where judges provide internally inconsistent ratings/rankings and outlier scoring. Finally, we discuss how, using real world panel data, this method can provide information about funding priority with a level of accuracy in a well-suited format for research funding decisions.

CONCLUSIONS

A methodology is provided to collect and employ both rating and ranking data in peer review assessments of proposal submission quality, highlighting several advantages over methods relying on ratings alone. This method leverages information to most accurately distill reviewer opinion into a useful output to make an informed funding decision and is general enough to be applied to settings such as in the NIH panel review process.

摘要

背景

在许多资助评审环境中,提案是根据评审评分的汇总统计数据来选择是否获得资助的。如果收集诸如前 k 偏好或成对比较等排名(这些是强制对提案进行排序的局部评估)并将其纳入评审评分分析中,这种方法的挑战(包括存在平局以及提案的资助偏好排序不明确)可能会得到缓解。然而,直到最近才开始同时分析评分和排名。本文描述了一种整合排名和分数的实用方法,并展示了其在实际应用中进行资助决策的有用性。

方法

我们首先介绍我们现有的用于排名和评分的联合模型——马洛 - 二项式模型,在为每个提案获得综合分数并生成诱导偏好排序方面的应用。然后我们将此方法应用于几个理论上的“玩具”评分和排名数据示例,旨在展示该模型的特定属性。接着我们描述一种创新方案,用于收集前六个提案的排名,作为典型同行评审评分程序的补充,并提供一个使用实际同行评审数据的案例研究,以举例说明输出结果以及该模型如何适当地解析评委的评估。

结果

对于理论示例,我们展示了该模型如何通过纳入排名为评分相同的提案提供偏好顺序,为使用评分和仅部分排名的提案提供偏好顺序(以及它们与仅基于评分的方法有何不同),以及为评委提供内部不一致评分/排名和异常评分的提案提供偏好顺序。最后,我们讨论如何使用实际的专家小组数据,这种方法能够以适合研究资助决策的格式,以一定的准确性提供有关资助优先级的信息。

结论

提供了一种在提案提交质量的同行评审评估中收集和使用评分及排名数据的方法,突出了相对于仅依赖评分的方法的几个优势。这种方法利用信息最准确地将评审意见提炼为有用的输出,以便做出明智的资助决策,并且通用性足够强,可应用于如美国国立卫生研究院(NIH)专家小组评审过程等场景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f3a/10367367/f8bc62e167a4/41073_2023_131_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验