改良的毕赤酵母生物生产底盘为尼古丁生物合成提供了新的见解。

An improved Nicotiana benthamiana bioproduction chassis provides novel insights into nicotine biosynthesis.

机构信息

Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Copenhagen, Denmark.

Earlham Institute, Norwich Research Park, Norwich, Norfolk, NR4 7UZ, UK.

出版信息

New Phytol. 2023 Oct;240(1):302-317. doi: 10.1111/nph.19141. Epub 2023 Jul 24.

Abstract

The model plant Nicotiana benthamiana is an increasingly attractive organism for the production of high-value, biologically active molecules. However, N. benthamiana accumulates high levels of pyridine alkaloids, in particular nicotine, which complicates the downstream purification processes. Here, we report a new assembly of the N. benthamiana genome as well as the generation of low-nicotine lines by CRISPR/Cas9-based inactivation of berberine bridge enzyme-like proteins (BBLs). Triple as well as quintuple mutants accumulated three to four times less nicotine than the respective control lines. The availability of lines without functional BBLs allowed us to probe their catalytic role in nicotine biosynthesis, which has remained obscure. Notably, chiral analysis revealed that the enantiomeric purity of nicotine was fully lost in the quintuple mutants. In addition, precursor feeding experiments showed that these mutants cannot facilitate the specific loss of C6 hydrogen that characterizes natural nicotine biosynthesis. Our work delivers an improved N. benthamiana chassis for bioproduction and uncovers the crucial role of BBLs in the stereoselectivity of nicotine biosynthesis.

摘要

模式植物黄花烟(Nicotiana benthamiana)是一种越来越有吸引力的生物,可用于生产高价值的、具有生物活性的分子。然而,黄花烟积累了高水平的吡啶生物碱,特别是尼古丁,这使得下游的纯化过程变得复杂。在这里,我们报告了一个新的黄花烟基因组组装,以及通过 CRISPR/Cas9 技术使小檗碱桥酶样蛋白(BBLs)失活,从而产生低尼古丁的株系。三突变体和五突变体积累的尼古丁比相应的对照株系少三到四倍。没有功能性 BBLs 的株系的可用性使我们能够探测它们在尼古丁生物合成中的催化作用,而尼古丁生物合成的催化作用一直不清楚。值得注意的是,手性分析表明,五突变体中尼古丁的对映体纯度完全丧失。此外,前体喂养实验表明,这些突变体不能促进天然尼古丁生物合成中特有的 C6 氢的特异性损失。我们的工作提供了一个改进的黄花烟生物生产底盘,并揭示了 BBLs 在尼古丁生物合成的立体选择性中的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5ec/10952274/566ad8129abd/NPH-240-302-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索