Liu Jilin, Yu Kai, Qiao Zhiyuan, Zhu Qianlong, Zhang Hong, Jiang Jie
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China.
School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology Harbin, Heilongjiang, 150090, P.R. China.
ChemSusChem. 2023 Oct 6;16(19):e202300601. doi: 10.1002/cssc.202300601. Epub 2023 Aug 17.
Suppressing side reactions and simultaneously enriching key intermediates during CO reduction reaction (CO RR) has been a challenge. Here, we propose a tandem catalyst (Cu O NCs-C-Copc) consisting of acetylene black, cobalt phthalocyanine (Copc) and cuprous oxide nanocubes (Cu O NCs) for efficient CO -to-ethylene conversion. Density-functional theory (DFT) calculation combined with experimental verification demonstrated that Copc can provide abundant CO to nearby copper sites while acetylene black successfully reduces the formation energies of key intermediates, leading to enhanced C H selectivity. X-ray photoelectron spectroscopy (XPS) and potentiostatic tests indicated that the catalytic stability of Cu O NCs-C-Copc was significantly enhanced compared with Cu O NCs. Finally, the industrial application prospect of the catalyst was evaluated using gas diffusion electrolyzers. The of Cu O NCs-C-Copc can reach to 58.4 % at -1.1 V vs. RHE in 0.1 M KHCO and 70.3 % at -0.76 V vs. RHE in 1.0 M KOH. This study sheds new light on the design and development of highly efficient CO RR tandem catalytic systems.
在一氧化碳还原反应(CO RR)过程中抑制副反应并同时富集关键中间体一直是一项挑战。在此,我们提出一种由乙炔黑、钴酞菁(Copc)和氧化亚铜纳米立方体(Cu O NCs)组成的串联催化剂(Cu O NCs-C-Copc),用于高效的一氧化碳到乙烯的转化。密度泛函理论(DFT)计算结合实验验证表明,Copc可以向附近的铜位点提供丰富的一氧化碳,而乙炔黑成功降低了关键中间体的形成能,从而提高了C H选择性。X射线光电子能谱(XPS)和恒电位测试表明,与Cu O NCs相比,Cu O NCs-C-Copc的催化稳定性显著增强。最后,使用气体扩散电解槽评估了该催化剂的工业应用前景。在0.1 M KHCO 中,相对于可逆氢电极(RHE),Cu O NCs-C-Copc在-1.1 V时的 可达58.4%;在1.0 M KOH中,相对于RHE,在-0.76 V时可达70.3%。这项研究为高效CO RR串联催化系统的设计和开发提供了新的思路。