Suppr超能文献

使用大规模TMT和LFQ实验进行基于组织的绝对定量分析。

Tissue-based absolute quantification using large-scale TMT and LFQ experiments.

作者信息

Wang Hong, Dai Chengxin, Pfeuffer Julianus, Sachsenberg Timo, Sanchez Aniel, Bai Mingze, Perez-Riverol Yasset

机构信息

Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China.

State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China.

出版信息

Proteomics. 2023 Oct;23(20):e2300188. doi: 10.1002/pmic.202300188. Epub 2023 Jul 24.

Abstract

Relative and absolute intensity-based protein quantification across cell lines, tissue atlases and tumour datasets is increasingly available in public datasets. These atlases enable researchers to explore fundamental biological questions, such as protein existence, expression location, quantity and correlation with RNA expression. Most studies provide MS1 feature-based label-free quantitative (LFQ) datasets; however, growing numbers of isobaric tandem mass tags (TMT) datasets remain unexplored. Here, we compare traditional intensity-based absolute quantification (iBAQ) proteome abundance ranking to an analogous method using reporter ion proteome abundance ranking with data from an experiment where LFQ and TMT were measured on the same samples. This new TMT method substitutes reporter ion intensities for MS1 feature intensities in the iBAQ framework. Additionally, we compared LFQ-iBAQ values to TMT-iBAQ values from two independent large-scale tissue atlas datasets (one LFQ and one TMT) using robust bottom-up proteomic identification, normalisation and quantitation workflows.

摘要

基于相对强度和绝对强度的蛋白质定量分析在跨细胞系、组织图谱和肿瘤数据集方面,在公共数据集中越来越容易获得。这些图谱使研究人员能够探索基本的生物学问题,如蛋白质的存在、表达位置、数量以及与RNA表达的相关性。大多数研究提供基于MS1特征的无标记定量(LFQ)数据集;然而,越来越多的等压串联质谱标签(TMT)数据集仍未得到探索。在这里,我们将传统的基于强度的绝对定量(iBAQ)蛋白质组丰度排名与一种类似的方法进行比较,该方法使用报告离子蛋白质组丰度排名,并结合来自一个实验的数据,在该实验中对相同样本同时测量了LFQ和TMT。这种新的TMT方法在iBAQ框架中用报告离子强度替代了MS1特征强度。此外,我们使用稳健的自下而上蛋白质组鉴定、归一化和定量工作流程比较了来自两个独立大规模组织图谱数据集(一个LFQ和一个TMT)的LFQ-iBAQ值与TMT-iBAQ值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验