Department of Materials Science, University of Illinois, Urbana, Illinois 61801, USA.
Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA.
J Chem Phys. 2023 Jul 28;159(4). doi: 10.1063/5.0153938.
Biomolecular condensates can form through the liquid-liquid phase separation (LLPS) of proteins and RNAs in cells. However, other states of organization, including mesostructured network microstructures and physical gels, have been observed, the physical mechanism of which are not well understood. We use the Polymer Reference Interaction Site Model liquid state integral equation theory to study the equilibrium behavior of (generally aperiodic in sequence) biomolecular condensates based on a minimal sticker-spacer associating polymer model. The role of polymer packing fraction, sequence, and the strength and range of intermolecular interactions on macromolecular scale spatial organization and phase behavior is studied for typical sticker-spacer sequences. In addition to the prediction of conventional LLPS, a sequence-dependent strongly fluctuating polymeric microemulsion homogeneous state is predicted at high enough concentrations beyond the so-called Lifshitz-like point, which we suggest can be relevant to the dense phase of microstructured biomolecular condensates. New connections between local clustering and the formation of mesoscopic microdomains, the influence of attraction range, compressibility, and the role of spatial correlations across scales, are established. Our results are also germane to understanding the polymer physics of dense solutions of nonperiodic and unique sequence synthetic copolymers and provide a foundation to create new theories for how polymer diffusion and viscosity are modified in globally isotropic and homogeneous dense polymeric microemulsions.
生物分子凝聚物可以通过细胞中蛋白质和 RNA 的液-液相分离 (LLPS) 形成。然而,还观察到了其他形式的组织状态,包括介观网络微结构和物理凝胶,其物理机制尚不清楚。我们使用聚合物参考相互作用位点模型液体状态积分方程理论,基于最小的黏附间隔聚合体模型,研究(通常在序列上无周期性)生物分子凝聚物的平衡行为。研究了聚合物堆积分数、序列以及分子间相互作用的强度和范围对典型黏附间隔序列的高分子尺度空间组织和相行为的影响。除了预测传统的 LLPS 之外,还在足够高的浓度下预测了依赖于序列的强波动聚合物微乳液均匀状态,超过了所谓的 Lifshitz 样点,我们认为这与微结构生物分子凝聚物的致密相有关。建立了局部聚集与介观微区形成之间的新联系、吸引力范围的影响、可压缩性以及跨尺度空间相关性的作用。我们的结果也与理解非周期性和独特序列合成共聚物的稠密溶液中的聚合物物理有关,并为如何在全局各向同性和均匀的稠密聚合物微乳液中改变聚合物扩散和粘度提供了基础,以创建新的理论。