Suppr超能文献

高度灵活的基于深度学习的图形编码水凝胶微球自动分析。

Highly Flexible Deep-Learning-Based Automatic Analysis for Graphically Encoded Hydrogel Microparticles.

机构信息

Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea.

出版信息

ACS Sens. 2023 Aug 25;8(8):3158-3166. doi: 10.1021/acssensors.3c00857. Epub 2023 Jul 25.

Abstract

Graphically encoded hydrogel microparticle (HMP)-based bioassay is a diagnostic tool characterized by exceptional multiplex detectability and robust sensitivity and specificity. Specifically, deep learning enables highly fast and accurate analyses of HMPs with diverse graphical codes. However, previous related studies have found the use of plain particles as data to be disadvantageous for accurate analyses of HMPs loaded with functional nanomaterials. Furthermore, the manual data annotation method used in existing approaches is highly labor-intensive and time-consuming. In this study, we present an efficient deep-learning-based analysis of encoded HMPs with diverse graphical codes and functional nanomaterials, utilizing the auto-annotation and synthetic data mixing methods for model training. The auto-annotation enhanced the throughput of dataset preparation up to 0.11 s/image. Using synthetic data mixing, a mean average precision of 0.88 was achieved in the analysis of encoded HMPs with magnetic nanoparticles, representing an approximately twofold improvement over the standard method. To evaluate the practical applicability of the proposed automatic analysis strategy, a single-image analysis was performed after the triplex immunoassay for the preeclampsia-related protein biomarkers. Finally, we accomplished a processing throughput of 0.353 s per sample for analyzing the result image.

摘要

图形编码水凝胶微球(HMP)生物测定法是一种诊断工具,其特点是具有出色的多重检测能力和强大的灵敏度和特异性。具体来说,深度学习能够实现对具有各种图形编码的 HMP 进行快速、准确的分析。然而,以前的相关研究发现,使用普通颗粒作为数据不利于对负载功能纳米材料的 HMP 进行准确分析。此外,现有方法中使用的手动数据标注方法非常耗时费力。在这项研究中,我们提出了一种基于深度学习的高效分析方法,用于分析具有各种图形编码和功能纳米材料的编码 HMP,利用自动注释和合成数据混合方法进行模型训练。自动注释将数据集准备的吞吐量提高到了 0.11 秒/图像。使用合成数据混合,在分析具有磁性纳米颗粒的编码 HMP 时,平均精度达到了 0.88,比标准方法提高了约两倍。为了评估所提出的自动分析策略的实际适用性,在三重免疫测定后对先兆子痫相关蛋白生物标志物进行了单图像分析。最后,我们完成了每个样本 0.353 秒的处理吞吐量,用于分析结果图像。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验