Suppr超能文献

基于语境的聊天机器人在遵循 ACR 适宜性准则方面超越了经过培训的放射科医生和通用的 ChatGPT。

A Context-based Chatbot Surpasses Trained Radiologists and Generic ChatGPT in Following the ACR Appropriateness Guidelines.

机构信息

Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.

Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.

出版信息

Radiology. 2023 Jul;308(1):e230970. doi: 10.1148/radiol.230970.

Abstract

Background Radiological imaging guidelines are crucial for accurate diagnosis and optimal patient care as they result in standardized decisions and thus reduce inappropriate imaging studies. Purpose In the present study, we investigated the potential to support clinical decision-making using an interactive chatbot designed to provide personalized imaging recommendations from American College of Radiology (ACR) appropriateness criteria documents using semantic similarity processing. Methods We utilized 209 ACR appropriateness criteria documents as specialized knowledge base and employed LlamaIndex, a framework that allows to connect large language models with external data, and the ChatGPT 3.5-Turbo to create an appropriateness criteria contexted chatbot (accGPT). Fifty clinical case files were used to compare the accGPT's performance against general radiologists at varying experience levels and to generic ChatGPT 3.5 and 4.0. Results All chatbots reached at least human performance level. For the 50 case files, the accGPT performed best in providing correct recommendations that were "usually appropriate" according to the ACR criteria and also did provide the highest proportion of consistently correct answers in comparison with generic chatbots and radiologists. Further, the chatbots provided substantial time and cost savings, with an average decision time of 5 minutes and a cost of 0.19 € for all cases, compared to 50 minutes and 29.99 € for radiologists (both p < 0.01). Conclusion ChatGPT-based algorithms have the potential to substantially improve the decision-making for clinical imaging studies in accordance with ACR guidelines. Specifically, a context-based algorithm performed superior to its generic counterpart, demonstrating the value of tailoring AI solutions to specific healthcare applications.

摘要

背景 放射影像学指南对于准确诊断和优化患者护理至关重要,因为它们可以实现标准化决策,从而减少不必要的影像学研究。目的 在本研究中,我们通过使用旨在使用语义相似性处理从美国放射学院 (ACR) 适宜性标准文件提供个性化成像建议的交互式聊天机器人,研究了使用语义相似性处理来支持临床决策的潜力。方法 我们使用了 209 份 ACR 适宜性标准文件作为专门知识库,并利用允许将大型语言模型与外部数据连接的 LlamaIndex 框架以及 ChatGPT 3.5-Turbo 创建了一个适宜性标准聊天机器人 (accGPT)。我们使用了 50 份临床病例文件来比较 accGPT 的性能与不同经验水平的普通放射科医生以及通用的 ChatGPT 3.5 和 4.0 的性能。结果 所有聊天机器人都达到了至少人类的表现水平。对于这 50 个病例文件,accGPT 在根据 ACR 标准提供正确的“通常适宜”建议方面表现最佳,并且与通用聊天机器人和放射科医生相比,它还提供了最高比例的一致正确答案。此外,与放射科医生相比,聊天机器人在时间和成本方面都有很大的节省,所有病例的平均决策时间为 5 分钟,成本为 0.19 欧元(均<0.01)。结论 基于 ChatGPT 的算法有可能根据 ACR 指南大大改善临床影像学研究的决策。具体来说,基于上下文的算法的表现优于通用算法,证明了针对特定医疗保健应用定制 AI 解决方案的价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验