Zhou Shuang, Xu Zidu, Zhang Mian, Xu Chunpu, Guo Yawen, Zhan Zaifu, Fang Yi, Ding Sirui, Wang Jiashuo, Xu Kaishuai, Xia Liqiao, Yeung Jeremy, Zha Daochen, Cai Dongming, Melton Genevieve B, Lin Mingquan, Zhang Rui
Division of Computational Health Sciences, Department of Surgery, University of Minnesota, Minneapolis, MN USA.
School of Nursing, Columbia University, New York, New York, USA.
NPJ Artif Intell. 2025;1(1):9. doi: 10.1038/s44387-025-00011-z. Epub 2025 Jun 9.
Automatic disease diagnosis has become increasingly valuable in clinical practice. The advent of large language models (LLMs) has catalyzed a paradigm shift in artificial intelligence, with growing evidence supporting the efficacy of LLMs in diagnostic tasks. Despite the increasing attention in this field, a holistic view is still lacking. Many critical aspects remain unclear, such as the diseases and clinical data to which LLMs have been applied, the LLM techniques employed, and the evaluation methods used. In this article, we perform a comprehensive review of LLM-based methods for disease diagnosis. Our review examines the existing literature across various dimensions, including disease types and associated clinical specialties, clinical data, LLM techniques, and evaluation methods. Additionally, we offer recommendations for applying and evaluating LLMs for diagnostic tasks. Furthermore, we assess the limitations of current research and discuss future directions. To our knowledge, this is the first comprehensive review for LLM-based disease diagnosis.
自动疾病诊断在临床实践中变得越来越有价值。大语言模型(LLMs)的出现催化了人工智能领域的范式转变,越来越多的证据支持大语言模型在诊断任务中的有效性。尽管该领域受到越来越多的关注,但仍缺乏整体观点。许多关键方面仍不明确,例如大语言模型已应用于哪些疾病和临床数据、所采用的大语言模型技术以及所使用的评估方法。在本文中,我们对基于大语言模型的疾病诊断方法进行了全面综述。我们的综述从多个维度审视了现有文献,包括疾病类型和相关临床专科、临床数据、大语言模型技术以及评估方法。此外,我们为将大语言模型应用于诊断任务及评估提供了建议。此外,我们评估了当前研究的局限性并讨论了未来方向。据我们所知,这是第一篇关于基于大语言模型的疾病诊断的全面综述。