Suppr超能文献

用于碳簇全局能量极小值搜索的神经网络原子势

Neural network atomistic potentials for global energy minima search in carbon clusters.

作者信息

Tkachenko Nikolay V, Tkachenko Anastasiia A, Nebgen Benjamin, Tretiak Sergei, Boldyrev Alexander I

机构信息

Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA.

Department of Computer Science, Utah State University, Logan, Utah 84322-0300, USA.

出版信息

Phys Chem Chem Phys. 2023 Aug 16;25(32):21173-21182. doi: 10.1039/d3cp02317f.

Abstract

The global energy optimization problem is an acute and important problem in chemistry. It is crucial to know the geometry of the lowest energy isomer (global minimum, GM) of a given compound for the evaluation of its chemical and physical properties. This problem is especially relevant for atomic clusters. Due to the exponential growth of the number of local minima geometries with the increase of the number of atoms in the cluster, it is important to find a computationally efficient and reliable method to navigate the energy landscape and locate a true global minima structure. Newly developed neural network (NN) atomistic potentials offer a numerically efficient and relatively accurate approach for molecular structure optimization. An important question that needs to be answered is "Can NN potentials, trained on a given set, represent the potential energy surface (PES) of a neighboring domain?". In this work, we tested the applicability of ANI-1ccx and ANI-nr NN atomistic potentials for the global minima optimization of carbon clusters C ( = 3-10). We showed that with the introduction of the cluster connectivity restriction and consequent DFT or calculations, ANI-1ccx and ANI-nr can be considered as robust PES pre-samplers that can capture the GM structure even for large clusters such as C.

摘要

全局能量优化问题是化学领域中一个尖锐且重要的问题。对于评估给定化合物的化学和物理性质而言,了解其最低能量异构体(全局最小值,GM)的几何结构至关重要。这个问题对于原子团簇尤为相关。由于随着团簇中原子数量的增加,局部极小值几何结构的数量呈指数增长,因此找到一种计算高效且可靠的方法来遍历能量景观并定位真正的全局极小值结构非常重要。新开发的神经网络(NN)原子势为分子结构优化提供了一种数值高效且相对准确的方法。一个需要回答的重要问题是“在给定集合上训练的NN势能否代表相邻域的势能面(PES)?”。在这项工作中,我们测试了ANI - 1ccx和ANI - nr NN原子势在碳团簇C(= 3 - 10)全局极小值优化中的适用性。我们表明,通过引入团簇连通性限制以及随之而来的DFT或计算,ANI - 1ccx和ANI - nr可以被视为强大的PES预采样器,即使对于像C这样的大团簇也能捕获GM结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验