Ren Guangxin, Liu Baocang, Liu Liang, Hu Minghao, Zhu Junpeng, Xu Xuan, Jing Peng, Wu Jinfang, Zhang Jun
School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology, Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, 49 Xilinguole South Road, Hohhot 010020, P. R. China.
Inner Mongolia Academy of Science and Technology, 70 Zhaowuda Road, Hohhot 010010, P. R. China.
Inorg Chem. 2023 Aug 7;62(31):12534-12547. doi: 10.1021/acs.inorgchem.3c01774. Epub 2023 Jul 25.
Biomass is a sustainable and renewable resource that can be converted into valuable chemicals, reducing the demand for fossil energy. 5-Hydroxymethylfurfural (HMF), as an important biomass platform molecule, can be converted to high-value-added 2,5-furandicarboxylic acid (FDCA) a green and renewable electrocatalytic oxidation route under mild reaction conditions, but efficient electrocatalysts are still lacking. Herein, we rationally fabricate a novel self-supported electrocatalyst of core-shell-structured copper hydroxide nanowires@cerium-doped nickel hydroxide nanosheets composite nanowires on a copper mesh (CuH_NWs@Ce:NiH_NSs/Cu) for electrocatalytically oxidizing HMF to FDCA. The integrated configuration of composite nanowires with rich interstitial spaces between them facilitates fast mass/electron transfer, improved conductivity, and complete exposure of active sites. The doping of Ce ions in nickel hydroxide nanosheets (NiH_NSs) and the coupling of copper hydroxide nanowires (CuH_NWs) regulate the electronic structure of the Ni active sites and optimize the adsorption strength of the active sites to the reactant, meanwhile promoting the generation of strong oxidation agents of Ni species, thereby resulting in improved electrocatalytic activity. Consequently, the optimal CuH_NWs@Ce:NiH_NSs/Cu electrocatalyst is able to achieve a HMF conversion of 98.5% with a FDCA yield of 97.9% and a Faradaic efficiency of 98.0% at a low constant potential of 1.45 V versus reversible hydrogen electrode. Meanwhile, no activity attenuation can be found after 15 successive cycling tests. Such electrocatalytic performance suppresses most of the reported Cu-based and Ni-based electrocatalysts. This work highlights the importance of structure and doping engineering strategies for the rational fabrication of high-performance electrocatalysts for biomass upgrading.
生物质是一种可持续的可再生资源,可转化为有价值的化学品,减少对化石能源的需求。5-羟甲基糠醛(HMF)作为一种重要的生物质平台分子,在温和的反应条件下可通过绿色可再生的电催化氧化途径转化为高附加值的2,5-呋喃二甲酸(FDCA),但仍缺乏高效的电催化剂。在此,我们合理制备了一种新型的自支撑电催化剂,即在铜网上制备核壳结构的氢氧化铜纳米线@铈掺杂氢氧化镍纳米片复合纳米线(CuH_NWs@Ce:NiH_NSs/Cu),用于将HMF电催化氧化为FDCA。复合纳米线之间具有丰富间隙空间的整体结构有利于快速的质量/电子转移、提高的导电性以及活性位点的完全暴露。铈离子掺杂到氢氧化镍纳米片(NiH_NSs)中以及氢氧化铜纳米线(CuH_NWs)的耦合调节了镍活性位点的电子结构,优化了活性位点对反应物的吸附强度,同时促进了镍物种强氧化剂的生成,从而提高了电催化活性。因此,最优的CuH_NWs@Ce:NiH_NSs/Cu电催化剂在相对于可逆氢电极1.4V的低恒定电位下能够实现98.5%的HMF转化率、97.9%的FDCA产率和98.0%的法拉第效率。同时,在连续15次循环测试后未发现活性衰减。这种电催化性能优于大多数已报道的铜基和镍基电催化剂。这项工作突出了结构和掺杂工程策略对于合理制备用于生物质升级的高性能电催化剂的重要性。