Szynkiewicz Dagmara, Ulenberg Szymon, Georgiev Paweł, Hejna Aleksander, Mikolaszek Barbara, Bączek Tomasz, Baron Gino V, Denayer Joeri F M, Desmet Gert, Belka Mariusz
Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland.
Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznań, Poland.
Anal Chem. 2023 Aug 8;95(31):11632-11640. doi: 10.1021/acs.analchem.3c01263. Epub 2023 Jul 25.
We report on the first successful attempt to produce a silica/polymer composite with retained C18 silica sorptive properties that can be reliably printed using three-dimensional (3D) FDM printing. A 3D printer provides an exceptional tool for producing complex objects in an easy and inexpensive manner and satisfying the current custom demand of research. Fused deposition modeling (FDM) is the most popular 3D-printing technique based on the extrusion of a thermoplastic material. The lack of appropriate materials limits the development of advanced applications involving directly 3D-printed devices with intrinsic chemical activity. Progress in sample preparation, especially for complex sample matrices and when mass spectrometry is favorable, remains a vital research field. Silica particles, for example, which are commonly used for extraction, cannot be directly extruded and are not readily workable in a powder form. The availability of composite materials containing a thermoplastic polymer matrix and dispersed silica particles would accelerate research in this area. This paper describes how to prepare a polypropylene (PP)/acrylonitrile-butadiene-styrene (ABS)/C18-functionalized silica composite that can be processed by FDM 3D printing. We present a method for producing the filament as well as a procedure to remove ABS by acetone rinsing (to activate the material). The result is an activated 3D-printed object with a porous structure that allows access to silica particles while maintaining macroscopic size and shape. The 3D-printed device is intended for use in a solid-phase microextraction (SPME) procedure. The proposed composite's effectiveness is demonstrated for the microextraction of glimepiride, imipramine, and carbamazepine. The complex honeycomb geometry of the sorbent has shown to be superior to the simple tubular sorbent, which proves the benefits of 3D printing. The 3D-printed sorbent's shape and microextraction parameters were fine-tuned to provide satisfactory recoveries (33-47%) and high precision (2-6%), especially for carbamazepine microextraction.
我们报告了首次成功制备具有保留C18硅胶吸附特性的二氧化硅/聚合物复合材料的尝试,该复合材料可通过三维(3D)熔融沉积成型(FDM)打印可靠地打印出来。3D打印机为以简单且经济的方式生产复杂物体并满足当前研究的定制需求提供了一个出色的工具。熔融沉积建模(FDM)是基于热塑性材料挤出的最流行的3D打印技术。缺乏合适的材料限制了涉及具有固有化学活性的直接3D打印设备的先进应用的发展。样品制备方面的进展,特别是对于复杂样品基质以及在质谱分析有利的情况下,仍然是一个至关重要的研究领域。例如,常用于萃取的二氧化硅颗粒不能直接挤出,并且以粉末形式不易加工。含有热塑性聚合物基体和分散二氧化硅颗粒的复合材料的可用性将加速该领域的研究。本文描述了如何制备一种可通过FDM 3D打印加工的聚丙烯(PP)/丙烯腈-丁二烯-苯乙烯(ABS)/ C18功能化二氧化硅复合材料。我们提出了一种生产长丝的方法以及通过丙酮冲洗去除ABS(以活化材料)的程序。结果是一个具有多孔结构的活化3D打印物体,该结构允许接触二氧化硅颗粒,同时保持宏观尺寸和形状。该3D打印设备旨在用于固相微萃取(SPME)程序。所提出的复合材料对格列美脲、丙咪嗪和卡马西平的微萃取效果得到了证明。吸附剂复杂的蜂窝状几何结构已被证明优于简单的管状吸附剂,这证明了3D打印的优势。对3D打印吸附剂的形状和微萃取参数进行了微调,以提供令人满意的回收率(33 - 47%)和高精度(2 - 6%),特别是对于卡马西平的微萃取。