Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
Institute of Mathematics of Bordeaux, University of Bordeaux, CNRS, Bordeaux INP, Talence, France.
J Anim Ecol. 2023 Oct;92(10):1979-1991. doi: 10.1111/1365-2656.13990. Epub 2023 Jul 25.
How demographic factors lead to variation or change in growth rates can be investigated using life table response experiments (LTRE) based on structured population models. Traditionally, LTREs focused on decomposing the asymptotic growth rate, but more recently decompositions of annual 'realized' growth rates using 'transient' LTREs have gained in popularity. Transient LTREs have been used particularly to understand how variation in vital rates translate into variation in growth for populations under long-term study. For these, complete population models may be constructed to investigate how temporal variation in environmental drivers affect vital rates. Such investigations have usually come down to estimating covariate coefficients for the effects of environmental variables on vital rates, but formal ways of assessing how they lead to variation in growth rates have been lacking. We extend transient LTREs to further partition the contributions from vital rates into contributions from temporally varying factors that affect them. The decomposition allows one to compare the resultant effect on the growth rate of different environmental factors, as well as density dependence, which may each act via multiple vital rates. We also show how realized growth rates can be decomposed into separate components from environmental and demographic stochasticity. The latter is typically omitted in LTRE analyses. We illustrate these extensions with an integrated population model (IPM) for data from a 26 years study on northern wheatears (Oenanthe oenanthe), a migratory passerine bird breeding in an agricultural landscape. For this population, consisting of around 50-120 breeding pairs per year, we partition variation in realized growth rates into environmental contributions from temperature, rainfall, population density and unexplained random variation via multiple vital rates, and from demographic stochasticity. The case study suggests that variation in first year survival via the unexplained random component, and adult survival via temperature are two main factors behind environmental variation in growth rates. More than half of the variation in growth rates is suggested to come from demographic stochasticity, demonstrating the importance of this factor for populations of moderate size.
人口统计学因素如何导致增长率的变化,可以通过基于结构化种群模型的生命表响应实验(LTRE)来研究。传统上,LTRE 侧重于分解渐近增长率,但最近使用“瞬态”LTRE 对年度“实际”增长率进行分解越来越受欢迎。瞬态 LTRE 尤其用于了解关键比率的变化如何转化为长期研究下种群的增长变化。对于这些,可能会构建完整的种群模型来研究环境驱动因素的时间变化如何影响关键比率。这些调查通常归结为估计环境变量对关键比率影响的协变量系数,但缺乏正式的方法来评估它们如何导致增长率的变化。我们将瞬态 LTRE 扩展到进一步将关键比率的贡献划分为影响它们的随时间变化的因素的贡献。这种分解允许比较不同环境因素对增长率的影响,以及密度依赖性,它们可能通过多个关键比率起作用。我们还展示了如何将实际增长率分解为来自环境和人口统计学随机性的单独成分。后者在 LTRE 分析中通常被忽略。我们使用一个北方麦雀(Oenanthe oenanthe)的 26 年研究数据的综合种群模型(IPM)来说明这些扩展,北方麦雀是一种在农业景观中繁殖的迁徙雀形目鸟类。对于这个种群,每年由大约 50-120 对繁殖对组成,我们将实际增长率的变化分为温度、降雨量、种群密度和未解释的随机变化通过多个关键比率的环境贡献,以及人口统计学随机性。案例研究表明,通过未解释的随机成分的第一年存活率的变化,以及通过温度的成年存活率的变化是增长率的环境变化的两个主要因素。超过一半的增长率变化归因于人口统计学随机性,这表明该因素对中等规模的种群非常重要。