Suppr超能文献

苹果园三年开花强度监测数据:从无人机获取的RGB图像集合。

Data on three-year flowering intensity monitoring in an apple orchard: A collection of RGB images acquired from unmanned aerial vehicles.

作者信息

Zhang Chenglong, Valente João, Wang Wensheng, van Dalfsen Pieter, de Jong Peter Frans, Rijk Bert, Kooistra Lammert

机构信息

Laboratory of Geo-information Science and Remote Sensing, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands.

Agricultural Information Institute, Chinese Academy of Agriculture Science, Beijing 100086, China.

出版信息

Data Brief. 2023 Jul 5;49:109356. doi: 10.1016/j.dib.2023.109356. eCollection 2023 Aug.

Abstract

There is a growing body of literature that recognises the importance of UAVs in precision agriculture tasks. Currently, flowering thinning tasks in orchard management rely on the decisions derived from time-consuming manual flower cluster counting in the field by an agrotechnician. Yet it is hard to guarantee the counting accuracy due to numerous human factors. The present dataset contains UAV images during the full blooming period of an apple orchard for three consecutive years, 2018, 2019, and 2020. It is directly linked to a research article entitled "Feasibility assessment of tree-level flower intensity quantification from UAV RGB imagery: A triennial study in an apple orchard". The data collection site was an apple orchard located at Randwijk, Overbetuwe, The Netherlands (51.938, 5.7068 in WGS84 UTM 31U). Moreover, the flower cluster number and floridity ground truth are also provided in one row from the orchard. The UAV flights were conducted with different flying altitudes, camera resolutions, and lighting conditions. This dataset aims to support researchers focussing on remote sensing, machine vision, deep learning, and image classification, and the stakeholders interested in precision horticulture and orchard management. It can be used for flowering intensity estimation and prediction, and spatial and temporal flowering variability mapping by using digital photogrammetry and 3D reconstruction.

摘要

越来越多的文献认识到无人机在精准农业任务中的重要性。目前,果园管理中的疏花任务依赖于农业技术人员在田间耗时的人工花簇计数所做出的决策。然而,由于众多人为因素,很难保证计数的准确性。本数据集包含2018年、2019年和2020年连续三年苹果园盛花期的无人机图像。它与一篇题为《基于无人机RGB图像的树级花强度量化可行性评估:苹果园的三年研究》的研究文章直接相关。数据收集地点是位于荷兰上贝图韦地区兰德wijk的一个苹果园(WGS84 UTM 31U坐标为51.938, 5.7068)。此外,果园还提供了一行花簇数量和花朵繁茂程度的地面真值。无人机飞行是在不同的飞行高度、相机分辨率和光照条件下进行的。该数据集旨在支持专注于遥感、机器视觉、深度学习和图像分类的研究人员,以及对精准园艺和果园管理感兴趣的利益相关者。它可用于通过数字摄影测量和三维重建进行花强度估计和预测,以及时空花变异性映射。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bcc/10365931/900b4410b41f/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验