文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于杂草制图的重采样无人机影像的空间质量评估

Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping.

作者信息

Borra-Serrano Irene, Peña José Manuel, Torres-Sánchez Jorge, Mesas-Carrascosa Francisco Javier, López-Granados Francisca

机构信息

Institute for Sustainable Agriculture, IAS-CSIC, P.O. Box 4084, Córdoba 14080, Spain.

Department of Graphic Engineering and Geomatics, Campus de Rabanales, University of Cordoba, Córdoba 14071, Spain.

出版信息

Sensors (Basel). 2015 Aug 12;15(8):19688-708. doi: 10.3390/s150819688.


DOI:10.3390/s150819688
PMID:26274960
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4570392/
Abstract

Unmanned aerial vehicles (UAVs) combined with different spectral range sensors are an emerging technology for providing early weed maps for optimizing herbicide applications. Considering that weeds, at very early phenological stages, are similar spectrally and in appearance, three major components are relevant: spatial resolution, type of sensor and classification algorithm. Resampling is a technique to create a new version of an image with a different width and/or height in pixels, and it has been used in satellite imagery with different spatial and temporal resolutions. In this paper, the efficiency of resampled-images (RS-images) created from real UAV-images (UAV-images; the UAVs were equipped with two types of sensors, i.e., visible and visible plus near-infrared spectra) captured at different altitudes is examined to test the quality of the RS-image output. The performance of the object-based-image-analysis (OBIA) implemented for the early weed mapping using different weed thresholds was also evaluated. Our results showed that resampling accurately extracted the spectral values from high spatial resolution UAV-images at an altitude of 30 m and the RS-image data at altitudes of 60 and 100 m, was able to provide accurate weed cover and herbicide application maps compared with UAV-images from real flights.

摘要

无人机(UAVs)与不同光谱范围的传感器相结合,是一种新兴技术,可用于绘制早期杂草分布图,以优化除草剂的施用。考虑到在物候期非常早的阶段,杂草在光谱和外观上都很相似,有三个主要因素很重要:空间分辨率、传感器类型和分类算法。重采样是一种创建具有不同像素宽度和/或高度的图像新版本的技术,它已被用于具有不同空间和时间分辨率的卫星图像中。在本文中,研究了从在不同高度捕获的真实无人机图像(无人机图像;无人机配备了两种类型的传感器,即可见光和可见光加近红外光谱)创建的重采样图像(RS图像)的效率,以测试RS图像输出的质量。还评估了使用不同杂草阈值进行早期杂草测绘的基于对象的图像分析(OBIA)的性能。我们的结果表明,重采样能够准确地从30米高度的高空间分辨率无人机图像中提取光谱值,并且与实际飞行的无人机图像相比,60米和100米高度的RS图像数据能够提供准确的杂草覆盖和除草剂施用图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a47/4570392/b80f2ddffac0/sensors-15-19688-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a47/4570392/8978ab2a322f/sensors-15-19688-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a47/4570392/56b0cace6d7f/sensors-15-19688-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a47/4570392/7b34af7f50ed/sensors-15-19688-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a47/4570392/58f0c47bcb71/sensors-15-19688-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a47/4570392/e541f9b1684e/sensors-15-19688-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a47/4570392/71d616910ad6/sensors-15-19688-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a47/4570392/b80f2ddffac0/sensors-15-19688-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a47/4570392/8978ab2a322f/sensors-15-19688-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a47/4570392/56b0cace6d7f/sensors-15-19688-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a47/4570392/7b34af7f50ed/sensors-15-19688-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a47/4570392/58f0c47bcb71/sensors-15-19688-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a47/4570392/e541f9b1684e/sensors-15-19688-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a47/4570392/71d616910ad6/sensors-15-19688-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a47/4570392/b80f2ddffac0/sensors-15-19688-g007.jpg

相似文献

[1]
Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping.

Sensors (Basel). 2015-8-12

[2]
Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images.

PLoS One. 2013-10-11

[3]
A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery.

PLoS One. 2018-4-26

[4]
Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution.

Sensors (Basel). 2015-3-6

[5]
A novel semi-supervised framework for UAV based crop/weed classification.

PLoS One. 2021

[6]
Configuration and specifications of an Unmanned Aerial Vehicle (UAV) for early site specific weed management.

PLoS One. 2013-3-6

[7]
Integration of remote-weed mapping and an autonomous spraying unmanned aerial vehicle for site-specific weed management.

Pest Manag Sci. 2019-11-12

[8]
Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery.

Sci Rep. 2019-11-27

[9]
Integrated Satellite, Unmanned Aerial Vehicle (UAV) and Ground Inversion of the SPAD of Winter Wheat in the Reviving Stage.

Sensors (Basel). 2019-3-27

[10]
Identification and Comprehensive Evaluation of Resistant Weeds Using Unmanned Aerial Vehicle-Based Multispectral Imagery.

Front Plant Sci. 2022-7-5

引用本文的文献

[1]
Remote sensing assessment of the weed adaptability to soil salinization induced by extreme droughts on coastal agriculture.

iScience. 2025-4-11

[2]
Enhancing Winter Wheat Soil-Plant Analysis Development Value Prediction through Evaluating Unmanned Aerial Vehicle Flight Altitudes, Predictor Variable Combinations, and Machine Learning Algorithms.

Plants (Basel). 2024-7-12

[3]
Weed target detection at seedling stage in paddy fields based on YOLOX.

PLoS One. 2023

[4]
Remote sensing for field pea yield estimation: A study of multi-scale data fusion approaches in phenomics.

Front Plant Sci. 2023-3-3

[5]
Fully convolutional network for rice seedling and weed image segmentation at the seedling stage in paddy fields.

PLoS One. 2019-4-18

[6]
Optical Sensing of Weed Infestations at Harvest.

Sensors (Basel). 2017-10-19

[7]
An Efficient Seam Elimination Method for UAV Images Based on Wallis Dodging and Gaussian Distance Weight Enhancement.

Sensors (Basel). 2016-5-10

本文引用的文献

[1]
Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution.

Sensors (Basel). 2015-3-6

[2]
Geographic Object-Based Image Analysis - Towards a new paradigm.

ISPRS J Photogramm Remote Sens. 2014-1

[3]
Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images.

PLoS One. 2013-10-11

[4]
Configuration and specifications of an Unmanned Aerial Vehicle (UAV) for early site specific weed management.

PLoS One. 2013-3-6

[5]
Chemical control of herbicide-resistant Lolium rigidum Gaud. in north-eastern Spain.

Pest Manag Sci. 2010-10-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索