Suppr超能文献

无监督的医学图像局部判别。

Unsupervised Local Discrimination for Medical Images.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Dec;45(12):15912-15929. doi: 10.1109/TPAMI.2023.3299038. Epub 2023 Nov 3.

Abstract

Contrastive learning, which aims to capture general representation from unlabeled images to initialize the medical analysis models, has been proven effective in alleviating the high demand for expensive annotations. Current methods mainly focus on instance-wise comparisons to learn the global discriminative features, however, pretermitting the local details to distinguish tiny anatomical structures, lesions, and tissues. To address this challenge, in this paper, we propose a general unsupervised representation learning framework, named local discrimination (LD), to learn local discriminative features for medical images by closely embedding semantically similar pixels and identifying regions of similar structures across different images. Specifically, this model is equipped with an embedding module for pixel-wise embedding and a clustering module for generating segmentation. And these two modules are unified by optimizing our novel region discrimination loss function in a mutually beneficial mechanism, which enables our model to reflect structure information as well as measure pixel-wise and region-wise similarity. Furthermore, based on LD, we propose a center-sensitive one-shot landmark localization algorithm and a shape-guided cross-modality segmentation model to foster the generalizability of our model. When transferred to downstream tasks, the learned representation by our method shows a better generalization, outperforming representation from 18 state-of-the-art (SOTA) methods and winning 9 out of all 12 downstream tasks. Especially for the challenging lesion segmentation tasks, the proposed method achieves significantly better performance.

摘要

对比学习旨在从无标签图像中捕获通用表示,以初始化医学分析模型,已被证明可以有效缓解对昂贵注释的高需求。当前的方法主要侧重于实例级比较,以学习全局判别特征,但忽略了区分微小解剖结构、病变和组织的局部细节。为了解决这个挑战,在本文中,我们提出了一个通用的无监督表示学习框架,称为局部判别(LD),通过紧密嵌入语义相似的像素并识别不同图像中相似结构的区域,来学习医学图像的局部判别特征。具体来说,该模型配备了一个用于像素级嵌入的嵌入模块和一个用于生成分割的聚类模块。这两个模块通过优化我们新颖的区域判别损失函数在互利机制中统一起来,这使得我们的模型能够反映结构信息以及度量像素级和区域级相似性。此外,基于 LD,我们提出了一种中心敏感的单次地标定位算法和一种形状引导的跨模态分割模型,以促进我们模型的泛化能力。当转移到下游任务时,我们的方法学习到的表示形式表现出更好的泛化能力,优于 18 种最先进(SOTA)方法的表示形式,并在所有 12 个下游任务中赢得了 9 个任务。特别是对于具有挑战性的病变分割任务,所提出的方法表现出了显著更好的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验