Zhejiang University, Hangzhou, 310027, Zhejiang, China.
Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, 310030, Zhejiang, China.
Microb Cell Fact. 2023 Jul 26;22(1):138. doi: 10.1186/s12934-023-02145-8.
L-arginine is an important amino acid with applications in diverse industrial and pharmaceutical fields. N-acetylglutamate, synthesized from L-glutamate and acetyl-CoA, is a precursor of the L-arginine biosynthetic branch in microorganisms. The enzyme that produces N-acetylglutamate, N-acetylglutamate synthase, is allosterically inhibited by L-arginine. L-glutamate, as a central metabolite, provides carbon backbone for diverse biological compounds besides L-arginine. When glucose is the sole carbon source, the theoretical maximum carbon yield towards L-arginine is 96.7%, but the experimental highest yield was 51%. The gap of L-arginine yield indicates the regulation complexity of carbon flux and energy during the L-arginine biosynthesis. Besides endogenous biosynthesis, N-acetylglutamate, the key precursor of L-arginine, can be obtained by chemical acylation of L-glutamate with a high yield of 98%. To achieve high-yield production of L-arginine, we demonstrated a novel approach by directly feeding precursor N-acetylglutamate to engineered Escherichia coli.
We reported a new approach for the high yield of L-arginine production in E. coli. Gene argA encoding N-acetylglutamate synthase was deleted to disable endogenous biosynthesis of N-acetylglutamate. The feasibility of external N-acetylglutamate towards L-arginine was verified via growth assay in argA strain. To improve L-arginine production, astA encoding arginine N-succinyltransferase, speF encoding ornithine decarboxylase, speB encoding agmatinase, and argR encoding an arginine responsive repressor protein were disrupted. Based on overexpression of argDGI, argCBH operons, encoding enzymes of the L-arginine biosynthetic pathway, ~ 4 g/L L-arginine was produced in shake flask fermentation, resulting in a yield of 0.99 mol L-arginine/mol N-acetylglutamate. This strain was further engineered for the co-production of L-arginine and pyruvate by removing genes adhE, ldhA, poxB, pflB, and aceE, encoding enzymes involved in the conversion and degradation of pyruvate. The resulting strain was shown to produce 4 g/L L-arginine and 11.3 g/L pyruvate in shake flask fermentation.
Here, we developed a novel approach to avoid the strict regulation of L-arginine on ArgA and overcome the metabolism complexity in the L-arginine biosynthesis pathway. We achieve a high yield of L-arginine production from N-acetylglutamate in E. coli. Co-production pyruvate and L-arginine was used as an example to increase the utilization of input carbon sources.
L-精氨酸是一种重要的氨基酸,在多种工业和制药领域都有应用。N-乙酰谷氨酸是由 L-谷氨酸和乙酰辅酶 A 合成的,是微生物中 L-精氨酸生物合成分支的前体。产生 N-乙酰谷氨酸的酶,即 N-乙酰谷氨酸合酶,受到 L-精氨酸的变构抑制。L-谷氨酸作为一种中心代谢物,除了 L-精氨酸之外,还为多种生物化合物提供碳骨架。当葡萄糖是唯一的碳源时,L-精氨酸的理论最大碳产率为 96.7%,但实验的最高产率为 51%。L-精氨酸产量的差距表明,在 L-精氨酸生物合成过程中,碳通量和能量的调节非常复杂。除了内源性生物合成,N-乙酰谷氨酸作为 L-精氨酸的关键前体,可以通过 L-谷氨酸与乙酰辅酶 A 的化学酰化以 98%的高产率获得。为了实现 L-精氨酸的高产,我们通过直接向工程大肠杆菌中添加前体 N-乙酰谷氨酸,展示了一种新的方法。
我们报告了一种在大肠杆菌中高产 L-精氨酸的新方法。基因 argA 编码 N-乙酰谷氨酸合酶,它被删除以使其无法进行内源 N-乙酰谷氨酸的生物合成。通过在 argA 菌株中的生长试验验证了外源性 N-乙酰谷氨酸对 L-精氨酸的可行性。为了提高 L-精氨酸的产量,我们敲除了编码精氨酸 N-琥珀酰基转移酶的 astA 基因、编码鸟氨酸脱羧酶的 speF 基因、编码胍丁胺酶的 speB 基因和编码精氨酸响应阻遏蛋白的 argR 基因。基于过表达 argDGI、argCBH 操纵子,即 L-精氨酸生物合成途径的酶,在摇瓶发酵中产生了约 4g/L 的 L-精氨酸,产率为 0.99mol L-精氨酸/mol N-乙酰谷氨酸。通过敲除编码参与丙酮酸转化和降解的酶的 adhE、ldhA、poxB、pflB 和 aceE 基因,该菌株进一步被工程化为同时生产 L-精氨酸和丙酮酸。在摇瓶发酵中,该菌株可产生 4g/L 的 L-精氨酸和 11.3g/L 的丙酮酸。
在这里,我们开发了一种新的方法来避免 L-精氨酸对 ArgA 的严格调节,并克服 L-精氨酸生物合成途径中的代谢复杂性。我们实现了大肠杆菌中 N-乙酰谷氨酸生产 L-精氨酸的高产率。以丙酮酸和 L-精氨酸的共生产为例,增加了输入碳源的利用率。