Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
Appl Microbiol Biotechnol. 2019 Oct;103(20):8413-8425. doi: 10.1007/s00253-019-10043-6. Epub 2019 Aug 9.
The introduction of the key non-oxidative glycolytic (NOG) pathway enzyme, phosphoketolases (PKTs), into heterologous hosts can improve the yield of a variety of acetyl CoA-derived products of interest. However, the low specific activity of existing PKTs compared with that of 6-phosphofructokinase (PFK), the key EMP pathway enzyme, largely limits their potential applications. To improve PKT activity, previous attempts have focused on increasing intracellular PKT concentration via the use of strong promoters. Herein, we report the establishment of a growth-coupled evolution strategy for the enrichment and selection of PKT mutants with improved specific activity in Corynebacterium glutamicum hosts with defective PFK. Five mutants from 9 Bifidobacterium adolescentis-source PKT (BA-PKT) mutant libraries were obtained. Site-directed mutagenesis analysis revealed 11 mutant sites which contributed to improved BA-PKT specific activity. Further structural analysis revealed that the mutant sites were located far away from the enzyme active site, which makes them almost unpredictable using a rational design approach. Mutant site recombination led to the construction of a novel mutant, PKT, with V 29.77 ± 1.58 U/mg and K/K 0.32 ± 0.01 s/mM, which corresponds to 73.27 ± 3.25% and 80.16 ± 3.38% improvements, respectively, compared with the wildtype (Vmax; 17.17 ± 0.59 U/mg, K/K; 0.17 ± 0.01 s/mM). Expression of PKT in C. glutamicum Z188 resulted in 16.67 ± 2.24% and 18.19 ± 0.53% improvement in L-glutamate titer and yield, respectively, compared with the wildtype BA-PKT. Our findings provide an efficient approach for improving the activity of PKTs. Furthermore, the novel mutants could serve as useful tools in improving the yield of L-glutamate and other acetyl CoA-associated products.
引入关键的非氧化糖酵解(NOG)途径酶磷酸酮酶(PKT)到异源宿主中可以提高各种乙酰辅酶 A 衍生产物的产量。然而,与关键 EMP 途径酶 6-磷酸果糖激酶(PFK)相比,现有的 PKT 特异性活性较低,在很大程度上限制了它们的潜在应用。为了提高 PKT 的活性,以前的尝试集中在通过使用强启动子来增加细胞内 PKT 的浓度。在此,我们报告了一种在磷酸果糖激酶缺陷型谷氨酸棒杆菌宿主中富集和选择具有提高特异性活性的 PKT 突变体的生长偶联进化策略的建立。从 9 个双歧杆菌源 PKT(BA-PKT)突变文库中获得了 5 个突变体。定点突变分析揭示了 11 个突变位点,这些突变位点有助于提高 BA-PKT 的特异性活性。进一步的结构分析表明,突变位点位于远离酶活性中心的位置,这使得它们几乎无法通过合理的设计方法来预测。突变体位点重组导致构建了一种新型突变体 PKT,其 V29.77 ± 1.58 U/mg 和 K/K0.32 ± 0.01 s/mM,与野生型相比分别提高了 73.27 ± 3.25%和 80.16 ± 3.38%(Vmax;17.17 ± 0.59 U/mg,K/K;0.17 ± 0.01 s/mM)。在谷氨酸棒杆菌 Z188 中表达 PKT 分别使 L-谷氨酸的产量和产率提高了 16.67 ± 2.24%和 18.19 ± 0.53%,与野生型 BA-PKT 相比。我们的研究结果为提高 PKT 活性提供了一种有效的方法。此外,新型突变体可作为提高 L-谷氨酸和其他乙酰辅酶 A 相关产物产量的有用工具。