Chavez James S, Rabe Jennifer L, Niño Katia E, Wells Harrison H, Gessner Rachel L, Mills Taylor S, Hernandez Giovanny, Pietras Eric M
Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
Front Cell Dev Biol. 2023 Jun 26;11:1204160. doi: 10.3389/fcell.2023.1204160. eCollection 2023.
Chronic inflammation is a common feature of aging and numerous diseases such as diabetes, obesity, and autoimmune syndromes and has been linked to the development of hematological malignancy. Blood-forming hematopoietic stem cells (HSC) can contribute to these diseases via the production of tissue-damaging myeloid cells and/or the acquisition of mutations in epigenetic and transcriptional regulators that initiate evolution toward leukemogenesis. We previously showed that the myeloid "master regulator" transcription factor PU.1 is robustly induced in HSC by pro-inflammatory cytokines such as interleukin (IL)-1β and limits their proliferative activity. Here, we used a PU.1-deficient mouse model to investigate the broader role of PU.1 in regulating hematopoietic activity in response to chronic inflammatory challenges. We found that PU.1 is critical in restraining inflammatory myelopoiesis via suppression of cell cycle and self-renewal gene programs in myeloid-biased multipotent progenitor (MPP) cells. Our data show that while PU.1 functions as a key driver of myeloid differentiation, it plays an equally critical role in tailoring hematopoietic responses to inflammatory stimuli while limiting expansion and self-renewal gene expression in MPPs. These data identify PU.1 as a key regulator of "emergency" myelopoiesis relevant to inflammatory disease and leukemogenesis.
慢性炎症是衰老以及糖尿病、肥胖症和自身免疫综合征等众多疾病的共同特征,并且与血液系统恶性肿瘤的发生有关。造血干细胞(HSC)可通过产生损伤组织的髓系细胞和/或在表观遗传和转录调节因子中获得突变,从而引发向白血病发生的演变,进而导致这些疾病。我们之前发现,促炎细胞因子如白细胞介素(IL)-1β可在造血干细胞中强烈诱导髓系“主调节因子”转录因子PU.1,并且限制其增殖活性。在此,我们使用PU.1缺陷小鼠模型来研究PU.1在应对慢性炎症挑战时调节造血活性的更广泛作用。我们发现,PU.1通过抑制偏向髓系的多能祖细胞(MPP)中的细胞周期和自我更新基因程序,在抑制炎症性髓系造血中起关键作用。我们的数据表明,虽然PU.1作为髓系分化的关键驱动因子发挥作用,但它在调整造血对炎症刺激的反应方面同样起着关键作用,同时限制MPP中的扩增和自我更新基因表达。这些数据确定PU.1是与炎症性疾病和白血病发生相关的“应急”髓系造血的关键调节因子。