Maan Anjali, Ghule Vikas D, Dharavath Srinivas
Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra 136119, Haryana, India.
Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
J Phys Chem A. 2023 Aug 10;127(31):6467-6475. doi: 10.1021/acs.jpca.3c03483. Epub 2023 Jul 27.
Density functional theory (DFT) methods were used to design a series of energetic dinitro-tris(triazole) isomers by altering the triazole rings and -NO groups. The impact of three nitrogen atoms' position in the tris(triazole) scaffold on energy content, performance, and stability was discussed. Based on computed heats of formation and densities, the detonation properties were predicted using the thermochemical EXPLO5 (v6.06) code. Using the bond dissociation energy of the longest C-NO bond, the thermal stability was investigated. The mechanical sensitivities were estimated and correlated with RDX and HMX using maximum heats of detonation (), free void (Δ) in the lattice of the crystalline compound, and total -NO group charge. Among the designed series, compounds O4, R1, R3, and R4 display high heats of formation (>450 kJ/mol), high densities (>1.92 g/cm), good detonation performances ( > 8.76 km/s and > 32.0 GPa), and low sensitivities. Our findings suggest that the isomeric tricyclic triazole backbone could be a promising platform for developing new high-performing and thermostable energy materials.
采用密度泛函理论(DFT)方法,通过改变三唑环和硝基来设计一系列高能二硝基 - 三(三唑)异构体。讨论了三(三唑)骨架中三个氮原子的位置对能量含量、性能和稳定性的影响。基于计算得到的生成热和密度,使用热化学EXPLO5(v6.06)代码预测爆轰性能。利用最长C - NO键的键解离能研究热稳定性。使用最大爆轰热、晶体化合物晶格中的自由空隙(Δ)和总硝基电荷来估计机械感度,并将其与黑索今(RDX)和奥克托今(HMX)相关联。在设计的系列中,化合物O4、R1、R3和R4表现出高生成热(>450 kJ/mol)、高密度(>1.92 g/cm³)、良好的爆轰性能(爆速>8.76 km/s和爆压>32.0 GPa)以及低感度。我们的研究结果表明,异构三环三唑骨架可能是开发新型高性能和热稳定能量材料的一个有前景的平台。