College of Life Sciences, Henan Normal University, Xinxiang, 453007, P. R. China.
BMC Genomics. 2023 Jul 27;24(1):423. doi: 10.1186/s12864-023-09530-y.
Long terminal repeat (LTR)-retrotransposons (LTR-RTs) are ubiquitous and make up the majority of nearly all sequenced plant genomes, whereas their pivotal roles in genome evolution, gene expression regulation as well as their epigenetic regulation are still not well understood, especially in a large number of closely related species.
Here, we analyzed the abundance and dynamic evolution of LTR-RTs in 54 species from an economically and agronomically important family, Fabaceae, and also selected two representative species for further analysis in expression of associated genes, transcriptional activity and DNA methylation patterns of LTR-RTs. Annotation results revealed highly varied proportions of LTR-RTs in these genomes (5.1%~68.4%) and their correlation with genome size was highly positive, and they were significantly contributed to the variance in genome size through species-specific unique amplifications. Almost all of the intact LTR-RTs were inserted into the genomes 4 Mya (million years ago), and more than 50% of them were inserted in the last 0.5 million years, suggesting that recent amplifications of LTR-RTs were an important force driving genome evolution. In addition, expression levels of genes with intronic, promoter, and downstream LTR-RT insertions of Glycine max and Vigna radiata, two agronomically important crops in Fabaceae, showed that the LTR-RTs located in promoter or downstream regions suppressed associated gene expression. However, the LTR-RTs within introns promoted gene expression or had no contribution to gene expression. Additionally, shorter and younger LTR-RTs maintained higher mobility and transpositional potential. Compared with the transcriptionally silent LTR-RTs, the active elements showed significantly lower DNA methylation levels in all three contexts. The distributions of transcriptionally active and silent LTR-RT methylation varied across different lineages due to the position of LTR-RTs located or potentially epigenetic regulation.
Lineage-specific amplification patterns were observed and higher methylation level may repress the activity of LTR-RTs, further influence evolution in Fabaceae species. This study offers valuable clues into the evolution, function, transcriptional activity and epigenetic regulation of LTR-RTs in Fabaceae genomes.
长末端重复(LTR)-逆转录转座子(LTR-RTs)普遍存在,构成了几乎所有已测序植物基因组的大部分,但其在基因组进化、基因表达调控以及表观遗传调控中的关键作用仍未得到很好的理解,尤其是在大量密切相关的物种中。
在这里,我们分析了经济和农业上重要的豆科(Fabaceae)家族的 54 个物种中 LTR-RTs 的丰度和动态进化,还选择了两个有代表性的物种进一步分析相关基因的表达、LTR-RTs 的转录活性和 DNA 甲基化模式。注释结果表明,这些基因组中的 LTR-RTs 比例差异很大(5.1%~68.4%),与基因组大小呈高度正相关,并且通过物种特异性的独特扩增对基因组大小的变化有显著贡献。几乎所有完整的 LTR-RTs 都是在 400 万年前(Mya)插入基因组的,其中超过 50%是在过去 50 万年插入的,这表明 LTR-RTs 的近期扩增是驱动基因组进化的重要力量。此外,在豆科中两种重要的农作物大豆(Glycine max)和豇豆(Vigna radiata)中具有内含子、启动子和下游 LTR-RT 插入的基因的表达水平表明,位于启动子或下游区域的 LTR-RTs 抑制了相关基因的表达。然而,位于内含子中的 LTR-RTs 促进了基因表达或对基因表达没有贡献。此外,较短和较年轻的 LTR-RTs 保持着更高的迁移和转座潜能。与转录沉默的 LTR-RTs 相比,活跃元件在所有三种情况下的 DNA 甲基化水平都明显较低。由于 LTR-RTs 位于或可能受到表观遗传调控的位置,转录活跃和沉默的 LTR-RT 甲基化的分布在不同谱系中有所不同。
观察到谱系特异性扩增模式,较高的甲基化水平可能抑制 LTR-RTs 的活性,进一步影响豆科物种的进化。本研究为 LTR-RTs 在豆科基因组中的进化、功能、转录活性和表观遗传调控提供了有价值的线索。