Liu Xuyang, Zheng Xueying, Dai Yiming, Li Bin, Wen Jiayun, Zhao Tong, Luo Wei
Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China.
School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China.
Adv Mater. 2023 Dec;35(49):e2304256. doi: 10.1002/adma.202304256. Epub 2023 Oct 27.
Solvent molecule tuning is used to alter the redox potentials of solvents or ion-solvent binding energy for high-voltage or low-temperature electrolytes. Herein, an electrolyte design strategy that effectively suppresses solid electrolyte interphase (SEI) dissolution and passivates highly-reactive metallic Na anode via solvent molecule tuning is proposed. With rationally lengthened phosphate backbones with ─CH ─ units, the low-solvation tris(2-ethylhexyl) phosphate (TOP) molecule effectively weakens the solvation ability of carbonate-based electrolytes, reduces the free solvent ratio, and enables an anion-enriched primary Na ion solvation sheath. The decreased free solvent and compact lower-solubility interphase established in this electrolyte prevent electrodes from continuous SEI dissolution and parasitic reactions at both room temperature (RT) and high temperature (HT). As a result, the Na/Na V (PO ) cell with the new electrolyte achieves impressive cycling stability of 95.7% capacity retention after 1800 cycles at 25 °C and 62.1% capacity retention after 700 cycles at 60 °C. Moreover, the TOP molecule not only maintains the nonflammable feature of phosphate but also attains higher thermal stability, which endows the electrolyte with high safety and thermal stability. This design concept for electrolytes offers a promising path to long-cycling and high-safety sodium metal batteries.
溶剂分子调控用于改变溶剂的氧化还原电位或离子-溶剂结合能,以用于高压或低温电解质。在此,提出了一种通过溶剂分子调控有效抑制固体电解质界面(SEI)溶解并钝化高活性金属钠阳极的电解质设计策略。通过合理地用─CH─单元延长磷酸酯主链,低溶剂化的三(2-乙基己基)磷酸酯(TOP)分子有效地削弱了碳酸盐基电解质的溶剂化能力,降低了自由溶剂比例,并形成了富含阴离子的初级钠离子溶剂化鞘层。这种电解质中自由溶剂的减少和形成的致密低溶解度界面可防止电极在室温(RT)和高温(HT)下发生连续的SEI溶解和寄生反应。结果,采用新型电解质的Na/Na V(PO)电池在25°C下经过1800次循环后实现了令人印象深刻的循环稳定性,容量保持率为95.7%,在60°C下经过700次循环后容量保持率为62.1%。此外,TOP分子不仅保持了磷酸盐的不可燃特性,还具有更高的热稳定性,这赋予了电解质高安全性和热稳定性。这种电解质设计理念为长循环和高安全性的钠金属电池提供了一条有前景的途径。