Guo Bing, Borda Victor, Laboulaye Roland, Spring Michele D, Wojnarski Mariusz, Vesely Brian A, Silva Joana C, Waters Norman C, O'Connor Timothy D, Takala-Harrison Shannon
Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD USA.
bioRxiv. 2023 Jul 15:2023.07.14.549114. doi: 10.1101/2023.07.14.549114.
Malaria genomic surveillance often estimates parasite genetic relatedness using metrics such as Identity-By-Decent (IBD). Yet, strong positive selection stemming from antimalarial drug resistance or other interventions may bias IBD-based estimates. In this study, we utilized simulations, a true IBD inference algorithm, and empirical datasets from different malaria transmission settings to investigate the extent of such bias and explore potential correction strategies. We analyzed whole genome sequence data generated from 640 new and 4,026 publicly available clinical isolates. Our findings demonstrated that positive selection distorts IBD distributions, leading to underestimated effective population size and blurred population structure. Additionally, we discovered that the removal of IBD peak regions partially restored the accuracy of IBD-based inferences, with this effect contingent on the population's background genetic relatedness. Consequently, we advocate for selection correction for parasite populations undergoing strong, recent positive selection, particularly in high malaria transmission settings.
疟疾基因组监测通常使用诸如同源一致度(IBD)等指标来估计寄生虫的遗传相关性。然而,由抗疟药物耐药性或其他干预措施导致的强烈正选择可能会使基于IBD的估计产生偏差。在本研究中,我们利用模拟、一种真正的IBD推断算法以及来自不同疟疾传播环境的实证数据集,来研究这种偏差的程度,并探索潜在的校正策略。我们分析了从640个新的和4026个公开可用的临床分离株中生成的全基因组序列数据。我们的研究结果表明,正选择会扭曲IBD分布,导致有效种群大小被低估以及种群结构模糊。此外,我们发现去除IBD峰值区域可部分恢复基于IBD推断的准确性,这种效果取决于种群的背景遗传相关性。因此,我们主张对近期经历强烈正选择的寄生虫种群进行选择校正,尤其是在高疟疾传播环境中。