Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
Nat Commun. 2024 Mar 20;15(1):2499. doi: 10.1038/s41467-024-46659-0.
Malaria genomic surveillance often estimates parasite genetic relatedness using metrics such as Identity-By-Decent (IBD), yet strong positive selection stemming from antimalarial drug resistance or other interventions may bias IBD-based estimates. In this study, we use simulations, a true IBD inference algorithm, and empirical data sets from different malaria transmission settings to investigate the extent of this bias and explore potential correction strategies. We analyze whole genome sequence data generated from 640 new and 3089 publicly available Plasmodium falciparum clinical isolates. We demonstrate that positive selection distorts IBD distributions, leading to underestimated effective population size and blurred population structure. Additionally, we discover that the removal of IBD peak regions partially restores the accuracy of IBD-based inferences, with this effect contingent on the population's background genetic relatedness and extent of inbreeding. Consequently, we advocate for selection correction for parasite populations undergoing strong, recent positive selection, particularly in high malaria transmission settings.
疟疾基因组监测通常使用遗传一致度(Identity-By-Decent,IBD)等指标来估计寄生虫遗传关联性,但来自抗疟药物耐药性或其他干预措施的强烈正向选择可能会使基于 IBD 的估计产生偏差。在这项研究中,我们使用模拟、真实的 IBD 推断算法以及来自不同疟疾传播环境的真实数据集,来探究这种偏差的程度,并探索潜在的校正策略。我们分析了来自 640 个新的和 3089 个公开的恶性疟原虫临床分离株的全基因组序列数据。我们证明了正向选择会扭曲 IBD 分布,从而导致有效种群大小被低估,种群结构变得模糊。此外,我们发现去除 IBD 峰区域部分恢复了基于 IBD 的推断的准确性,这种效果取决于群体的背景遗传关联性和近交程度。因此,我们主张对经历强烈、近期正向选择的寄生虫群体进行选择校正,特别是在疟疾传播率较高的环境中。