Blomqvist Ebba K, Huang Haina, Karbstein Katrin
Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida 33458, United States of America.
The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA 92037.
bioRxiv. 2023 Jul 10:2023.07.10.548325. doi: 10.1101/2023.07.10.548325.
Ribosomes are complex macromolecules assembled from 4 rRNAs and 79 ribosomal proteins (RPs). Their assembly is organized in a highly hierarchical manner, which is thought to avoid dead-end pathways, thereby enabling efficient assembly of ribosomes in the large quantities needed for healthy cellular growth. Moreover, hierarchical assembly also can help ensure that each RP is included in the mature ribosome. Nonetheless, how this hierarchy is achieved remains unknown, beyond the examples that depend on direct RP-RP interactions, which account for only a fraction of the observed dependencies. Using assembly of the small subunit head and a disease-associated mutation in the assembly factor Ltv1 as a model system, we dissect here how the hierarchy in RP binding is constructed. Our data demonstrate that the LIPHAK-disease-associated Ltv1 mutation leads to global defects in head assembly, which are explained by direct binding of Ltv1 to 5 out of 15 RPs, and indirect effects that affect 4 additional RPs. These indirect effects are mediated by conformational transitions in the nascent subunit that are regulated by Ltv1. Mechanistically, Ltv1 aids the recruitment of some RPs via direct protein-protein interactions, but surprisingly also delays the recruitment of other RPs. Delayed binding of key RPs also delays the acquisition of RNA structure that is stabilized by these proteins. Finally, our data also indicate direct roles for Ltv1 in chaperoning the folding of a key rRNA structural element, the three-helix junction j34-35-38. Thus, Ltv1 plays critical roles in organizing the order of both RP binding to rRNA and rRNA folding, thereby enabling efficient 40S subunit assembly.
核糖体是由4种核糖体RNA(rRNA)和79种核糖体蛋白(RP)组装而成的复杂大分子。它们的组装以高度分层的方式进行组织,这种方式被认为可以避免出现死胡同路径,从而能够高效地组装出健康细胞生长所需的大量核糖体。此外,分层组装还有助于确保每个核糖体蛋白都能被纳入成熟的核糖体中。尽管如此,除了依赖核糖体蛋白直接相互作用的例子(这些例子仅占观察到的依赖关系的一小部分)之外,这种分层是如何实现的仍然未知。我们以小亚基头部的组装以及组装因子Ltv1中与疾病相关的突变作为模型系统,在此剖析核糖体蛋白结合的分层是如何构建的。我们的数据表明,与LIPHAK疾病相关的Ltv1突变会导致头部组装出现全局性缺陷,这可以通过Ltv1与15种核糖体蛋白中的5种直接结合以及影响另外4种核糖体蛋白的间接效应来解释。这些间接效应是由Ltv1调控的新生亚基中的构象转变介导的。从机制上讲,Ltv1通过直接的蛋白质 - 蛋白质相互作用帮助招募一些核糖体蛋白,但令人惊讶的是,它也会延迟其他核糖体蛋白的招募。关键核糖体蛋白的延迟结合也会延迟由这些蛋白质稳定的RNA结构的形成。最后,我们的数据还表明Ltv1在陪伴关键rRNA结构元件三螺旋连接j34 - 35 - 38的折叠过程中发挥直接作用。因此,Ltv1在组织核糖体蛋白与rRNA结合的顺序以及rRNA折叠过程中都发挥着关键作用,从而实现高效的40S亚基组装。