Suppr超能文献

利用 DMS-MaPseq 揭示 DEAD-box 蛋白在核糖体组装中的作用。

Using DMS-MaPseq to uncover the roles of DEAD-box proteins in ribosome assembly.

机构信息

Department of Integrative Structural and Computational Biology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA.

Department of Integrative Structural and Computational Biology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA; The Skaggs Graduate School of Chemical and Biological Sciences, Jupiter, FL, USA.

出版信息

Methods. 2022 Aug;204:249-257. doi: 10.1016/j.ymeth.2022.05.001. Epub 2022 May 9.

Abstract

DMS (dimethylsulfate) is a time-tested chemical probe for nucleic acid secondary structure that has recently re-emerged as a powerful tool to study RNA structure and structural changes, by coupling it to high throughput sequencing techniques. This variant, termed DMS-MaPseq, allows for mapping of all RNAs in a cell at the same time. However, if an RNA adopts different structures, for example during the assembly of an RNA-protein complex, or as part of its functional cycle, then DMS-MaPseq cannot differentiate between these structures, and an ensemble average will be produced. This is especially challenging for long-lived RNAs, such as ribosomes, whose steady-state abundance far exceeds that of any assembly intermediates, rendering those inaccessible to DMS-MaPseq on total RNAs. These challenges can be overcome by purification of assembly intermediates stalled at specific assembly steps (or steps in the functional cycle), via a combination of affinity tags and mutants stalled at defined steps, and subsequent DMS probing of these intermediates. Interpretation of the differences in DMS accessibility is facilitated by additional structural information, e.g. from cryo-EM experiments, available for many functional RNAs. While this approach is generally useful for studying RNA folding or conformational changes within RNA-protein complexes, it can be particularly valuable for studying the role(s) of DEAD-box proteins, as these tend to lead to larger conformational rearrangements, often resulting from the release of an RNA-binding protein from a bound RNA. Here we provide an adaptation of the DMS-MaPseq protocol to study RNA conformational transitions during ribosome assembly, which addresses the challenges arising from the presence of many assembly intermediates, all at concentrations far below that of mature ribosomes. While this protocol was developed for the yeast S. cerevisiae, we anticipate that it should be readily transferable to other model organisms for which affinity purification has been established.

摘要

DMS(二甲基亚砜)是一种经过时间考验的核酸二级结构化学探针,最近它作为一种强大的工具重新出现,通过与高通量测序技术结合,用于研究 RNA 结构和结构变化。这种变体称为 DMS-MaPseq,可以同时绘制细胞中所有 RNA 的图谱。然而,如果 RNA 采用不同的结构,例如在 RNA-蛋白质复合物的组装过程中,或者作为其功能循环的一部分,那么 DMS-MaPseq 就无法区分这些结构,而只能产生一个综合平均图谱。对于长寿命的 RNA 来说,这尤其具有挑战性,例如核糖体,其稳态丰度远远超过任何组装中间体的丰度,使得这些中间体在总 RNA 上无法被 DMS-MaPseq 检测到。通过将结合标签和在特定步骤(或功能循环中的步骤)处停滞的突变体结合使用,可以克服这些挑战,并对这些中间体进行后续的 DMS 探测。通过对许多功能性 RNA 可用的额外结构信息(例如来自 cryo-EM 实验的数据),可以促进对 DMS 可及性差异的解释。虽然这种方法通常可用于研究 RNA 折叠或 RNA-蛋白质复合物内的构象变化,但对于研究 DEAD 框蛋白的作用特别有价值,因为这些蛋白往往会导致更大的构象重排,通常是由于 RNA 结合蛋白从结合的 RNA 上释放出来。在这里,我们提供了一种对 DMS-MaPseq 方案的改编,用于研究核糖体组装过程中 RNA 构象转变,该方案解决了由于存在许多组装中间体且其浓度远低于成熟核糖体而产生的挑战。虽然该方案是为酵母 S. cerevisiae 开发的,但我们预计它应该很容易转移到其他已经建立了亲和纯化的模式生物。

相似文献

1
Using DMS-MaPseq to uncover the roles of DEAD-box proteins in ribosome assembly.
Methods. 2022 Aug;204:249-257. doi: 10.1016/j.ymeth.2022.05.001. Epub 2022 May 9.
2
DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo.
Nat Methods. 2017 Jan;14(1):75-82. doi: 10.1038/nmeth.4057. Epub 2016 Nov 7.
3
Viral RNA structure analysis using DMS-MaPseq.
Methods. 2020 Nov 1;183:68-75. doi: 10.1016/j.ymeth.2020.04.001. Epub 2020 Apr 3.
4
Probing RNA Structure With Optimized DMS-MaPseq in Rice.
Front Plant Sci. 2022 Mar 31;13:869267. doi: 10.3389/fpls.2022.869267. eCollection 2022.
5
Genome-wide probing RNA structure with the modified DMS-MaPseq in Arabidopsis.
Methods. 2019 Feb 15;155:30-40. doi: 10.1016/j.ymeth.2018.11.018. Epub 2018 Nov 29.
7
In Vivo RNA Structure Probing with DMS-MaPseq.
Methods Mol Biol. 2022;2404:299-310. doi: 10.1007/978-1-0716-1851-6_16.
8
DMS-MaPseq for Genome-Wide or Targeted RNA Structure Probing In Vitro and In Vivo.
Methods Mol Biol. 2021;2254:219-238. doi: 10.1007/978-1-0716-1158-6_13.
9
Assembly factors chaperone ribosomal RNA folding by isolating helical junctions that are prone to misfolding.
Proc Natl Acad Sci U S A. 2021 Jun 22;118(25). doi: 10.1073/pnas.2101164118.
10
Roles of DEAD-box proteins in RNA and RNP Folding.
RNA Biol. 2010 Nov-Dec;7(6):667-76. doi: 10.4161/rna.7.6.13571. Epub 2010 Nov 1.

引用本文的文献

1
The kinase Rio1 and a ribosome collision-dependent decay pathway survey the integrity of 18S rRNA cleavage.
PLoS Biol. 2024 Apr 25;22(4):e3001767. doi: 10.1371/journal.pbio.3001767. eCollection 2024 Apr.
2
A disease associated mutant reveals how Ltv1 orchestrates RP assembly and rRNA folding of the small ribosomal subunit head.
PLoS Genet. 2023 Nov 1;19(11):e1010862. doi: 10.1371/journal.pgen.1010862. eCollection 2023 Nov.
4
Attacking a DEAD problem: The role of DEAD-box ATPases in ribosome assembly and beyond.
Methods Enzymol. 2022;673:19-38. doi: 10.1016/bs.mie.2022.03.033. Epub 2022 Apr 9.

本文引用的文献

1
Attacking a DEAD problem: The role of DEAD-box ATPases in ribosome assembly and beyond.
Methods Enzymol. 2022;673:19-38. doi: 10.1016/bs.mie.2022.03.033. Epub 2022 Apr 9.
2
The modifying enzyme Tsr3 establishes the hierarchy of Rio kinase binding in 40S ribosome assembly.
RNA. 2022 Apr;28(4):568-582. doi: 10.1261/rna.078994.121. Epub 2022 Jan 14.
3
Release of the ribosome biogenesis factor Bud23 from small subunit precursors in yeast.
RNA. 2022 Mar;28(3):371-389. doi: 10.1261/rna.079025.121. Epub 2021 Dec 21.
4
Assembly factors chaperone ribosomal RNA folding by isolating helical junctions that are prone to misfolding.
Proc Natl Acad Sci U S A. 2021 Jun 22;118(25). doi: 10.1073/pnas.2101164118.
6
Cryo-EM structure of 90 small ribosomal subunit precursors in transition states.
Science. 2020 Sep 18;369(6510):1477-1481. doi: 10.1126/science.aba9690.
7
90 pre-ribosome transformation into the primordial 40 subunit.
Science. 2020 Sep 18;369(6510):1470-1476. doi: 10.1126/science.abb4119.
8
Determination of RNA structural diversity and its role in HIV-1 RNA splicing.
Nature. 2020 Jun;582(7812):438-442. doi: 10.1038/s41586-020-2253-5. Epub 2020 May 6.
9
A kinase-dependent checkpoint prevents escape of immature ribosomes into the translating pool.
PLoS Biol. 2019 Dec 13;17(12):e3000329. doi: 10.1371/journal.pbio.3000329. eCollection 2019 Dec.
10
Transient Protein-RNA Interactions Guide Nascent Ribosomal RNA Folding.
Cell. 2019 Nov 27;179(6):1357-1369.e16. doi: 10.1016/j.cell.2019.10.035. Epub 2019 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验