Rutkowski David M, Vincenzetti Vincent, Vavylonis Dimitrios, Martin Sophie G
Department of Physics, Lehigh University, Bethlehem PA, USA.
Department of Fundamental Microbiology, University of Lausanne, Switzerland.
bioRxiv. 2023 Jul 21:2023.07.21.550042. doi: 10.1101/2023.07.21.550042.
Local Cdc42 GTPase activation promotes polarized exocytosis, resulting in membrane flows that deplete low-mobility membrane-associated proteins from the growth region. To investigate the self-organizing properties of the Cdc42 secretion-polarization system under membrane flow, we developed a reaction-diffusion particle model. The model includes positive feedback activation of Cdc42, hydrolysis by GTPase-activating proteins (GAPs), and flow-induced displacement by exo/endocytosis. Simulations show how polarization relies on flow-induced depletion of low mobility GAPs. To probe the role of Cdc42 mobility in the fission yeast , we changed its membrane binding properties by replacing its prenylation site with 1, 2 or 3 repeats of the Rit1 C terminal membrane binding domain (ritC), yielding alleles with progressively lower unbinding and diffusion rates. Concordant modelling predictions and experimental observations show that lower Cdc42 mobility results in lower Cdc42 activation level and wider patches. Indeed, while Cdc42-1ritC cells are viable and polarized, Cdc42-2ritC polarize poorly and Cdc42-3ritC is inviable. The model further predicts that GAP depletion increases Cdc42 activity at the expense of loss of polarization. Experiments confirm this prediction, as deletion of Cdc42 GAPs restores viability to Cdc42-3ritC cells. Our combined experimental and modelling studies demonstrate how membrane flows are an integral part of Cdc42-driven pattern formation.
局部Cdc42 GTP酶激活促进极化胞吐作用,导致膜流动,从而使生长区域中低迁移率的膜相关蛋白减少。为了研究膜流动条件下Cdc42分泌-极化系统的自组织特性,我们开发了一种反应-扩散粒子模型。该模型包括Cdc42的正反馈激活、GTP酶激活蛋白(GAPs)的水解作用以及胞吐/胞吞作用引起的流动诱导位移。模拟结果显示了极化如何依赖于流动诱导的低迁移率GAPs的消耗。为了探究Cdc42迁移率在裂殖酵母中的作用,我们通过用Rit1 C末端膜结合结构域(ritC)的1、2或3个重复序列替换其异戊二烯化位点来改变其膜结合特性,从而产生解离和扩散速率逐渐降低的等位基因。一致的建模预测和实验观察表明,较低的Cdc42迁移率导致较低的Cdc42激活水平和更宽的斑块。实际上,虽然Cdc42-1ritC细胞是存活且极化的,但Cdc42-2ritC细胞极化较差,而Cdc42-3ritC细胞无法存活。该模型进一步预测,GAPs的消耗会以极化丧失为代价增加Cdc42的活性。实验证实了这一预测,因为删除Cdc42 GAPs可恢复Cdc42-3ritC细胞的活力。我们结合实验和建模的研究表明,膜流动是Cdc42驱动的模式形成不可或缺的一部分。