Chelko Stephen P, Penna Vinay, Engel Morgan, Landim-Vieira Maicon, Cannon Elisa N, Lavine Kory, Saffitz Jeffrey E
bioRxiv. 2023 Jul 13:2023.07.12.548682. doi: 10.1101/2023.07.12.548682.
Inhibition of nuclear factor kappa-B (NFκB) signaling prevents disease in mice, a model of arrhythmogenic cardiomyopathy (ACM). Moreover, NFκB is activated in ACM patient-derived iPSC-cardiac myocytes under basal conditions . Here, we used genetic approaches and sequencing studies to define the relative pathogenic roles of immune signaling in cardiac myocytes vs. inflammatory cells in mice. We found that NFκB signaling in cardiac myocytes drives myocardial injury, contractile dysfunction, and arrhythmias in mice. It does this by mobilizing cells expressing C-C motif chemokine receptor-2 (CCR2+ cells) to the heart, where they mediate myocardial injury and arrhythmias. Contractile dysfunction in mice is caused both by loss of heart muscle and negative inotropic effects of inflammation in viable muscle. Single nucleus RNA sequencing and cellular indexing of transcriptomes and epitomes (CITE-seq) studies revealed marked pro-inflammatory changes in gene expression and the cellular landscape in hearts of mice involving cardiac myocytes, fibroblasts and CCR2+ cells. Changes in gene expression in cardiac myocytes and fibroblasts in mice were modulated by actions of CCR2+ cells. These results highlight complex mechanisms of immune injury and regulatory crosstalk between cardiac myocytes, inflammatory cells, and fibroblasts in the pathogenesis of ACM.
We have uncovered a therapeutically targetable innate immune mechanism regulating myocardial injury and cardiac function in a clinically relevant mouse model of Arrhythmogenic Cardiomyopathy (ACM).
抑制核因子κB(NFκB)信号通路可预防致心律失常性心肌病(ACM)小鼠模型中的疾病。此外,在基础条件下,NFκB在源自ACM患者的诱导多能干细胞衍生的心肌细胞中被激活。在此,我们使用遗传学方法和测序研究来确定小鼠心肌细胞与炎症细胞中免疫信号的相对致病作用。我们发现,心肌细胞中的NFκB信号通路会导致小鼠心肌损伤、收缩功能障碍和心律失常。其机制是通过将表达C-C基序趋化因子受体2的细胞(CCR2+细胞)募集到心脏,这些细胞在心脏中介导心肌损伤和心律失常。小鼠的收缩功能障碍是由心肌丧失和存活心肌中炎症的负性肌力作用共同引起的。单核RNA测序以及转录组和表位细胞索引(CITE-seq)研究揭示了小鼠心脏中涉及心肌细胞、成纤维细胞和CCR2+细胞的基因表达和细胞格局的显著促炎变化。小鼠心肌细胞和成纤维细胞中的基因表达变化受CCR2+细胞作用的调节。这些结果突出了ACM发病机制中心肌细胞、炎症细胞和成纤维细胞之间免疫损伤和调节性串扰的复杂机制。
我们在致心律失常性心肌病(ACM)的临床相关小鼠模型中发现了一种可治疗靶向的先天性免疫机制,该机制调节心肌损伤和心脏功能。