Suppr超能文献

建立预测中国 MPO-AAV 肺病患者治疗抵抗的放射组学列线图:一项两中心研究。

Development of a radiomics nomogram to predict the treatment resistance of Chinese MPO-AAV patients with lung involvement: a two-center study.

机构信息

Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.

National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.

出版信息

Front Immunol. 2023 Jul 12;14:1084299. doi: 10.3389/fimmu.2023.1084299. eCollection 2023.

Abstract

BACKGROUND

Previous studies from our group and other investigators have shown that lung involvement is one of the independent predictors for treatment resistance in patients with myeloperoxidase (MPO)-anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (MPO-AAV). However, it is unclear which image features of lung involvement can predict the therapeutic response in MPO-AAV patients, which is vital in decision-making for these patients. Our aim was to develop and validate a radiomics nomogram to predict treatment resistance of Chinese MPO-AAV patients based on low-dose multiple slices computed tomography (MSCT) of the involved lung with cohorts from two centers.

METHODS

A total of 151 MPO-AAV patients with lung involvement (MPO-AAV-LI) from two centers were enrolled. Two different models (Model 1: radiomics signature; Model 2: radiomics nomogram) were built based on the clinical and MSCT data to predict the treatment resistance of MPO-AAV with lung involvement in training and test cohorts. The performance of the models was assessed using the area under the curve (AUC). The better model was further validated. A nomogram was constructed and evaluated by DCA and calibration curves, which further tested in all enrolled data and compared with the other model.

RESULTS

Model 2 had a higher predicting ability than Model 1 both in training (AUC: 0.948 vs. 0.824; = 0.039) and test cohorts (AUC: 0.913 vs. 0.898; = 0.043). As a better model, Model 2 obtained an excellent predictive performance (AUC: 0.929; 95% CI: 0.827-1.000) in the validation cohort. The DCA curve demonstrated that Model 2 was clinically feasible. The calibration curves of Model 2 closely aligned with the true treatment resistance rate in the training ( = 0.28) and test sets ( = 0.70). In addition, the predictive performance of Model 2 (AUC: 0.929; 95% CI: 0.875-0.964) was superior to Model 1 (AUC: 0.862; 95% CI: 0.796-0.913) and serum creatinine (AUC: 0.867; 95% CI: 0.802-0.917) in all patients (all < 0.05).

CONCLUSION

The radiomics nomogram (Model 2) is a useful, non-invasive tool for predicting the treatment resistance of MPO-AAV patients with lung involvement, which might aid in individualizing treatment decisions.

摘要

背景

本研究团队及其他研究人员先前的研究表明,肺受累是抗髓过氧化物酶(MPO)-抗中性粒细胞胞质抗体(ANCA)相关性血管炎(MPO-AAV)患者治疗抵抗的独立预测因素之一。然而,尚不清楚肺受累的哪些影像学特征可以预测 MPO-AAV 患者的治疗反应,这对于这些患者的决策至关重要。我们的目的是基于两个中心的受累肺低剂量多层螺旋 CT(MSCT)数据,建立并验证一种预测中国 MPO-AAV 患者治疗抵抗的放射组学列线图。

方法

共纳入两个中心的 151 例肺受累的 MPO-AAV 患者(MPO-AAV-LI)。基于临床和 MSCT 数据,分别建立两个不同的模型(模型 1:放射组学特征;模型 2:放射组学列线图),以预测训练和测试队列中 MPO-AAV 患者的治疗抵抗。采用曲线下面积(AUC)评估模型的性能。进一步验证更好的模型。通过 DCA 和校准曲线构建和评估列线图,并进一步在所有入组数据中进行测试,并与其他模型进行比较。

结果

模型 2 在训练(AUC:0.948 比 0.824;=0.039)和测试队列(AUC:0.913 比 0.898;=0.043)中的预测能力均高于模型 1。作为一个更好的模型,模型 2 在验证队列中获得了优异的预测性能(AUC:0.929;95%CI:0.827-1.000)。DCA 曲线表明模型 2 具有临床可行性。模型 2 的校准曲线与训练集(=0.28)和测试集(=0.70)中的真实治疗抵抗率吻合良好。此外,模型 2 的预测性能(AUC:0.929;95%CI:0.875-0.964)优于模型 1(AUC:0.862;95%CI:0.796-0.913)和血清肌酐(AUC:0.867;95%CI:0.802-0.917)在所有患者中(均<0.05)。

结论

放射组学列线图(模型 2)是一种有用的、非侵入性的工具,可用于预测肺受累的 MPO-AAV 患者的治疗抵抗,可能有助于个体化治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c79/10369051/fc520d6ebc2d/fimmu-14-1084299-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验