Chen Zanyu, Li Xiaopeng, Zhao Jun, Zhang Shiyu, Wang Jiajun, Zhang Hong, Zhang Jinfeng, Dong Qiujiang, Zhang Wanxing, Hu Wenbin, Han Xiaopeng
Tianjin Key Laboratory of Composite and Functional Material, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China.
School of Materials Science and Engineering, Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin, 300384, P. R. China.
Angew Chem Int Ed Engl. 2023 Sep 25;62(39):e202308686. doi: 10.1002/anie.202308686. Epub 2023 Aug 17.
Rational design of Pt single-atom catalysts provides a promising strategy to significantly improve the electrocatalytic activity for hydrogen evolution reaction. In this work, we presented a novel and efficient strategy for utilizing the low electron-density region of substrate to effectively trap and confine high electron-density metal atoms. The Pt single-atom catalyst supported by nickel selenide with rich vacancies was prepared via a hydrothermal-impregnation stepwise approach. Through experimental testation and DFT theoretical calculation, we confirm that Pt single atoms are well distributed at cationic vacancies of nickel selenide with loading amount of 3.2 wt. %. Moreover, the atomic Pt combined with the high electronegative Se to form Pt-Se bond as a "bridge" between single atoms and substrate for fast electron translation. This novel catalyst shows an extremely low overpotential of 45 mV at 10 mA cm and an excellent stability over 120 h. Furthermore, the nickel selenide supported Pt SACs exhibits long-term stability for practical application, which maintains a high current density of 390 mA cm over 80 h with a retention of 99 %. This work points a promising direction for designing single atoms catalysts with high catalytic activity and stability for advanced green energy conversion technologies.
铂单原子催化剂的合理设计为显著提高析氢反应的电催化活性提供了一种有前景的策略。在这项工作中,我们提出了一种新颖且高效的策略,利用基底的低电子密度区域有效捕获和限制高电子密度的金属原子。通过水热-浸渍分步方法制备了由富含空位的硒化镍负载的铂单原子催化剂。通过实验测试和密度泛函理论(DFT)计算,我们证实铂单原子以3.2 wt.%的负载量均匀分布在硒化镍的阳离子空位处。此外,原子态的铂与高电负性的硒结合形成Pt-Se键,作为单原子与基底之间快速电子转移的“桥梁”。这种新型催化剂在10 mA cm时显示出极低的过电位45 mV,并且在120 h以上具有出色的稳定性。此外,硒化镍负载的铂单原子催化剂在实际应用中表现出长期稳定性,在80 h内保持390 mA cm的高电流密度,保留率为99%。这项工作为设计具有高催化活性和稳定性的单原子催化剂以用于先进的绿色能源转换技术指明了一个有前景的方向。