Xi Min, Zhang Hua, Yang Lingfeng, Long Youyu, Zhao Yifan, Chen Anran, Xiao Qiaozhi, Liu Tingting, Xiao Xuechun, Hu Guangzhi
Yunnan Key Laboratory of Electromagnetic Materials and Devices, School of Materials and Energy, Yunnan University, Kunming, 650091, China.
Electron Microscopy Center, Yunnan University, Kunming, 650091, China.
Adv Sci (Weinh). 2025 Jan;12(1):e2409855. doi: 10.1002/advs.202409855. Epub 2024 Oct 28.
Constructing single-atom catalysts (SACs) and optimizing the electronic structure between metal atoms and support interactions is deemed one of the most effective strategies for boosting the catalytic kinetics of the hydrogen evolution reaction (HER). Herein, a sulfur vacancy defect trapping strategy is developed to anchor tungsten single atoms onto ultrathin VS nanosheets with a high loading of 25.1 wt.%. The obtained W-VS catalyst exhibits a low overpotential of 54 mV at 10 mA cm and excellent long-term stability in alkaline electrolytes. Density functional theory calculations reveal that the in situ anchoring of W single atoms triggers the delocalization and redistribution of electron density, which effectively accelerates water dissociation and facilitates hydrogen adsorption/desorption, thus enhancing HER activity. This work provides valuable insights into understanding highly active single-atom catalysts for large-scale hydrogen production.
构建单原子催化剂(SACs)并优化金属原子与载体相互作用之间的电子结构被认为是提高析氢反应(HER)催化动力学的最有效策略之一。在此,开发了一种硫空位缺陷捕获策略,将钨单原子锚定在超薄VS纳米片上,负载量高达25.1 wt.%。所制备的W-VS催化剂在10 mA cm时具有54 mV的低过电位,并且在碱性电解质中具有优异的长期稳定性。密度泛函理论计算表明,W单原子的原位锚定引发了电子密度的离域和重新分布,有效加速了水的解离并促进了氢的吸附/脱附,从而提高了HER活性。这项工作为理解用于大规模制氢的高活性单原子催化剂提供了有价值的见解。