School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
College of Agricultural. Human, and Natural Resource Sciences, Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
Plant Physiol. 2023 Dec 30;194(1):190-208. doi: 10.1093/plphys/kiad428.
Cell wall properties play a major role in determining photosynthetic carbon uptake and water use through their impact on mesophyll conductance (CO2 diffusion from substomatal cavities into photosynthetic mesophyll cells) and leaf hydraulic conductance (water movement from xylem, through leaf tissue, to stomata). Consequently, modification of cell wall (CW) properties might help improve photosynthesis and crop water use efficiency (WUE). We tested this using 2 independent transgenic rice (Oryza sativa) lines overexpressing the rice OsAT10 gene (encoding a "BAHD" CoA acyltransferase), which alters CW hydroxycinnamic acid content (more para-coumaric acid and less ferulic acid). Plants were grown under high and low water levels, and traits related to leaf anatomy, CW composition, gas exchange, hydraulics, plant biomass, and canopy-level water use were measured. Alteration of hydroxycinnamic acid content led to statistically significant decreases in mesophyll CW thickness (-14%) and increased mesophyll conductance (+120%) and photosynthesis (+22%). However, concomitant increases in stomatal conductance negated the increased photosynthesis, resulting in no change in intrinsic WUE (ratio of photosynthesis to stomatal conductance). Leaf hydraulic conductance was also unchanged; however, transgenic plants showed small but statistically significant increases in aboveground biomass (AGB) (+12.5%) and canopy-level WUE (+8.8%; ratio of AGB to water used) and performed better under low water levels than wild-type plants. Our results demonstrate that changes in CW composition, specifically hydroxycinnamic acid content, can increase mesophyll conductance and photosynthesis in C3 cereal crops such as rice. However, attempts to improve photosynthetic WUE will need to enhance mesophyll conductance and photosynthesis while maintaining or decreasing stomatal conductance.
细胞壁特性通过影响胞间层导度(Substomatal cavities 中的 CO2 扩散到光合细胞)和叶片水力导度(水分从木质部经叶片组织到气孔的运动),在决定光合碳吸收和水分利用方面起着重要作用。因此,细胞壁(CW)特性的改变可能有助于提高光合作用和作物水分利用效率(WUE)。我们使用 2 个独立的过表达水稻(Oryza sativa)OsAT10 基因(编码“BAHD”CoA 酰基转移酶)的转基因水稻株系进行了测试,该基因改变了 CW 羟基肉桂酸含量(更多对香豆酸和更少阿魏酸)。在高水和低水平下种植植物,并测量与叶片解剖结构、CW 组成、气体交换、水力、植物生物量和冠层水平水分利用相关的性状。羟基肉桂酸含量的改变导致叶片 CW 厚度(-14%)显著降低,同时增加了叶片导度(+120%)和光合作用(+22%)。然而,同时增加的气孔导度抵消了光合作用的增加,导致内在 WUE(光合作用与气孔导度的比值)没有变化。叶片水力导度也没有变化;然而,转基因植物的地上生物量(AGB)(+12.5%)和冠层水平 WUE(AGB 与水分利用的比值)有较小但统计学上显著的增加,并且在低水平下比野生型植物表现更好。我们的结果表明,CW 组成的改变,特别是羟基肉桂酸含量的改变,可以增加 C3 谷类作物(如水稻)的叶片导度和光合作用。然而,要提高光合作用 WUE,需要在保持或降低气孔导度的同时,提高叶片导度和光合作用。