Suppr超能文献

一种基于参数优化变分模态分解、特征加权重构以及小样本下多目标注意力卷积神经网络的新型滚动轴承故障诊断方法。

A novel rolling bearing fault diagnosis method based on parameter optimization variational mode decomposition with feature weighted reconstruction and multi-target attention convolutional neural networks under small samples.

作者信息

Hu Chaoqun, Li Yonghua, Chen Zhe, Men Zhihui

机构信息

College of Locomotive and Rolling Stock Engineering, Dalian Jiaotong University, Dalian 116000, China.

Department of Locomotive Engineering, Liaoning Railway Vocational and Technical College, Jinzhou 121000, China.

出版信息

Rev Sci Instrum. 2023 Jul 1;94(7). doi: 10.1063/5.0158412.

Abstract

To enhance the precision of rolling bearing fault diagnosis, an intelligent hybrid approach is proposed in this paper for signal processing and fault diagnosis in small samples. This approach is based on advanced techniques, combining parameter optimization variational mode decomposition weighted by multiscale permutation entropy (MPE) with maximal information coefficient and multi-target attention convolutional neural networks (MTACNN). First, an improved variational mode decomposition (VMD) is developed to denoise the raw signal. The whale optimization algorithm was used to optimize the penalty factor and mode component number in the VMD algorithm to obtain several intrinsic mode functions (IMFs). Second, separate MPE calculations are performed for both the raw signal and each of the IMF components obtained from the VMD decomposition; the results are used to calculate the maximum information coefficient (MIC). Subsequently, each MIC is normalized and converted to a weight coefficient for signal reconstruction. Ultimately, the reconstructed signals serve as input to the MTACNN for diagnosing rolling bearing faults. Results demonstrate that the signal processing approach exhibits superior noise reduction capability through simple processing. Furthermore, compared to several similar approaches, The method proposed for fault diagnosis achieves superior performance levels in the fault pattern recognition target and the fault severity recognition target.

摘要

为提高滚动轴承故障诊断的精度,本文提出一种智能混合方法用于小样本信号处理与故障诊断。该方法基于先进技术,将多尺度排列熵(MPE)加权的参数优化变分模态分解与最大信息系数相结合,并采用多目标注意力卷积神经网络(MTACNN)。首先,开发一种改进的变分模态分解(VMD)对原始信号进行去噪。利用鲸鱼优化算法优化VMD算法中的惩罚因子和模态分量数,以获得多个本征模态函数(IMF)。其次,对原始信号和从VMD分解得到的每个IMF分量分别进行MPE计算;结果用于计算最大信息系数(MIC)。随后,对每个MIC进行归一化并转换为信号重构的权重系数。最终,将重构后的信号作为输入提供给MTACNN以诊断滚动轴承故障。结果表明,该信号处理方法通过简单处理展现出卓越的降噪能力。此外,与几种类似方法相比,所提出的故障诊断方法在故障模式识别目标和故障严重程度识别目标方面均达到了卓越的性能水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验