Suppr超能文献

参数优化变分模态分解方法在滚动轴承故障特征提取中的应用

Application of Parameter Optimized Variational Mode Decomposition Method in Fault Feature Extraction of Rolling Bearing.

作者信息

Liang Tao, Lu Hao, Sun Hexu

机构信息

School of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin 300401, China.

School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.

出版信息

Entropy (Basel). 2021 Apr 24;23(5):520. doi: 10.3390/e23050520.

Abstract

The decomposition effect of variational mode decomposition (VMD) mainly depends on the choice of decomposition number K and penalty factor α. For the selection of two parameters, the empirical method and single objective optimization method are usually used, but the aforementioned methods often have limitations and cannot achieve the optimal effects. Therefore, a multi-objective multi-island genetic algorithm (MIGA) is proposed to optimize the parameters of VMD and apply it to feature extraction of bearing fault. First, the envelope entropy () can reflect the sparsity of the signal, and Renyi entropy () can reflect the energy aggregation degree of the time-frequency distribution of the signal. Therefore, and are selected as fitness functions, and the optimal solution of VMD parameters is obtained by the MIGA algorithm. Second, the improved VMD algorithm is used to decompose the bearing fault signal, and then two intrinsic mode functions (IMF) with the most fault information are selected by improved kurtosis and Holder coefficient for reconstruction. Finally, the envelope spectrum of the reconstructed signal is analyzed. The analysis of comparative experiments shows that the feature extraction method can extract bearing fault features more accurately, and the fault diagnosis model based on this method has higher accuracy.

摘要

变分模态分解(VMD)的分解效果主要取决于分解层数K和惩罚因子α的选择。对于这两个参数的选择,通常采用经验方法和单目标优化方法,但上述方法往往存在局限性,无法达到最优效果。因此,提出了一种多目标多岛遗传算法(MIGA)来优化VMD的参数,并将其应用于轴承故障特征提取。首先,包络熵()能够反映信号的稀疏性,Renyi熵()能够反映信号时频分布的能量聚集程度。因此,选择和作为适应度函数,通过MIGA算法得到VMD参数的最优解。其次,利用改进的VMD算法对轴承故障信号进行分解,然后通过改进的峭度和Holder系数选择两个包含故障信息最多的本征模态函数(IMF)进行重构。最后,对重构信号的包络谱进行分析。对比实验分析表明,该特征提取方法能够更准确地提取轴承故障特征,基于该方法的故障诊断模型具有更高的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4d3/8146961/f8f611c43405/entropy-23-00520-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验