文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

凝集素以不同方式调节菌核发育、致病性以及对非生物和生物胁迫的反应。

Agglutinin Modulates Sclerotial Development, Pathogenicity and Response to Abiotic and Biotic Stresses in Different Manners.

作者信息

Wang Yongchun, Xu Yuping, Wei Jinfeng, Zhang Jing, Wu Mingde, Li Guoqing, Yang Long

机构信息

State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China.

出版信息

J Fungi (Basel). 2023 Jul 10;9(7):737. doi: 10.3390/jof9070737.


DOI:10.3390/jof9070737
PMID:37504726
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10381867/
Abstract

is an important plant pathogenic fungus of many crops. Our previous study identified the agglutinin (SSA) that can be partially degraded by the serine protease CmSp1 from the mycoparasite . However, the biological functions of SSA in the pathogenicity of and in its response to infection by as well as to environmental stresses, remain unknown. In this study, SSA disruption and complementary mutants were generated for characterization of its biological functions. Both the wild-type (WT) of and the mutants were compared for growth and sclerotial formation on potato dextrose agar (PDA) and autoclaved carrot slices (ACS), for pathogenicity on oilseed rape, as well as for susceptibility to chemical stresses (NaCl, KCl, CaCl, sorbitol, mannitol, sucrose, sodium dodecyl sulfate, HO) and to the mycoparasitism of . The disruption mutants (Δ-175, Δ-178, Δ-225) did not differ from the WT and the complementary mutant Δ-178C in mycelial growth. However, compared to the WT and Δ-178C, the disruption mutants formed immature sclerotia on PDA, and produced less but larger sclerotia on ACS; they became less sensitive to the eight investigated chemical stresses, but more aggressive in infecting leaves of oilseed rape, and more susceptible to mycoparasitism by These results suggest that SSA positively regulates sclerotial development and resistance to mycoparasitism, but negatively regulates pathogenicity and resistance to chemical stresses.

摘要

是许多作物的一种重要植物病原真菌。我们之前的研究鉴定出凝集素(SSA),其可被来自重寄生菌的丝氨酸蛋白酶CmSp1部分降解。然而,SSA在该病原菌致病性、对侵染的响应以及对环境胁迫方面的生物学功能仍不清楚。在本研究中,构建了SSA缺失突变体和互补突变体以表征其生物学功能。比较了该病原菌的野生型(WT)和突变体在马铃薯葡萄糖琼脂(PDA)和高压灭菌胡萝卜片(ACS)上的生长及菌核形成情况,在油菜上的致病性,以及对化学胁迫(NaCl、KCl、CaCl、山梨醇、甘露醇、蔗糖、十二烷基硫酸钠、H₂O₂)的敏感性和对重寄生菌的敏感性。缺失突变体(Δ - 175、Δ - 178、Δ - 225)在菌丝生长方面与WT和互补突变体Δ - 178C没有差异。然而,与WT和Δ - 178C相比,缺失突变体在PDA上形成不成熟菌核,在ACS上产生的菌核较少但较大;它们对所研究的八种化学胁迫变得不那么敏感,但在侵染油菜叶片时更具侵染性,并且对重寄生菌的敏感性更高。这些结果表明,SSA正向调节菌核发育和对重寄生菌的抗性,但负向调节致病性和对化学胁迫的抗性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aae/10381867/7b977b8ad591/jof-09-00737-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aae/10381867/e25c83a249b5/jof-09-00737-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aae/10381867/9c2f723b244d/jof-09-00737-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aae/10381867/db4ac0fe0861/jof-09-00737-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aae/10381867/95c072f78e7b/jof-09-00737-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aae/10381867/03d95fbd9b0f/jof-09-00737-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aae/10381867/05e8d5c850ea/jof-09-00737-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aae/10381867/6673e0848888/jof-09-00737-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aae/10381867/7b977b8ad591/jof-09-00737-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aae/10381867/e25c83a249b5/jof-09-00737-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aae/10381867/9c2f723b244d/jof-09-00737-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aae/10381867/db4ac0fe0861/jof-09-00737-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aae/10381867/95c072f78e7b/jof-09-00737-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aae/10381867/03d95fbd9b0f/jof-09-00737-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aae/10381867/05e8d5c850ea/jof-09-00737-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aae/10381867/6673e0848888/jof-09-00737-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aae/10381867/7b977b8ad591/jof-09-00737-g008.jpg

相似文献

[1]
Agglutinin Modulates Sclerotial Development, Pathogenicity and Response to Abiotic and Biotic Stresses in Different Manners.

J Fungi (Basel). 2023-7-10

[2]
Long-Term Biosanitation by Application of Coniothyrium minitans on Sclerotinia sclerotiorum-Infected Crops.

Phytopathology. 1999-2

[3]
CmAim24 Is Essential for Mitochondrial Morphology, Conidiogenesis, and Mycoparasitism in .

Appl Environ Microbiol. 2020-2-18

[4]
Host Transcriptional Response of Induced by the Mycoparasite .

Front Microbiol. 2020-2-11

[5]
Interactions between Coniothyrium minitans and Sclerotinia minor affect biocontrol efficacy of C. minitans.

Phytopathology. 2011-3

[6]
Mycoparasitism illuminated by genome and transcriptome sequencing of , an important biocontrol fungus of the plant pathogen .

Microb Genom. 2020-3

[7]
The NDT80-like transcription factor CmNdt80a affects the conidial formation and germination, mycoparasitism, and cell wall integrity of Coniothyrium minitans.

J Appl Microbiol. 2022-8

[8]
Uninterrupted Expression of in a Sclerotial Parasite Leads to Reduced Growth and Enhanced Antifungal Ability.

Front Microbiol. 2017-11-10

[9]
Biological characterization of the melanin biosynthesis gene Bcscd1 in the plant pathogenic fungus Botrytis cinerea.

Fungal Genet Biol. 2022-5

[10]
Water potential affects Coniothyrium minitans growth, germination and parasitism of Sclerotinia sclerotiorum sclerotia.

Fungal Biol. 2011-7-7

引用本文的文献

[1]
Genome-driven insights into Bacillus safensis strain B7 as a seed coating agent for plant growth promotion and alleviation of biotic and abiotic stresses.

PLoS One. 2025-8-18

[2]
Trans-Kingdom sRNA Silencing in for Crop Fungal Disease Management.

Pathogens. 2025-4-21

[3]
Recent advances in virulence of a broad host range plant pathogen : a mini-review.

Front Microbiol. 2024-6-19

本文引用的文献

[1]
Expression of a mycoparasite protease in plant petals suppresses the petal-mediated infection by necrotrophic pathogens.

Cell Rep. 2023-11-28

[2]
Biological characterization of the melanin biosynthesis gene Bcscd1 in the plant pathogenic fungus Botrytis cinerea.

Fungal Genet Biol. 2022-5

[3]
Early Secretory Pathway-Associated Proteins SsEmp24 and SsErv25 Are Involved in Morphogenesis and Pathogenicity in a Filamentous Phytopathogenic Fungus.

mBio. 2021-12-21

[4]
The Notorious Soilborne Pathogenic Fungus : An Update on Genes Studied with Mutant Analysis.

Pathogens. 2019-12-27

[5]
Adhesins of Yeasts: Protein Structure and Interactions.

J Fungi (Basel). 2018-10-27

[6]
Mechanisms of Broad Host Range Necrotrophic Pathogenesis in Sclerotinia sclerotiorum.

Phytopathology. 2018-8-30

[7]
Toxicity, membrane binding and uptake of the Sclerotinia sclerotiorum agglutinin (SSA) in different insect cell lines.

In Vitro Cell Dev Biol Anim. 2017-9

[8]
The Fungal Cell Wall: Structure, Biosynthesis, and Function.

Microbiol Spectr. 2017-5

[9]
Lectins: a primer for histochemists and cell biologists.

Histochem Cell Biol. 2017-2

[10]
Cell wall structure and biogenesis in Aspergillus species.

Biosci Biotechnol Biochem. 2016-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索