Kanazirski Nikolay, Vladova Diyana, Neychev Deyan, Raycheva Ralitsa, Kanazirska Petya
Department of Oral Surgery, Faculty of Dental Medicine, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria.
Department of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria.
J Funct Biomater. 2023 Jul 18;14(7):376. doi: 10.3390/jfb14070376.
The placement of dental screw implants typically involves the use of rotary techniques and drills to create a bone bed. This study explores the potential benefits of combining this method with an Er:YAG laser. Split osteotomies were performed on 10 jaws of euthanized domestic pigs (Sus scrofa domestica), with 12 mandibular implant osteotomies in each jaw, divided into 4 groups. In order to make a comprehensive assessment of the effect of Er:YAG lasers, histomorphological techniques were used to measure the reduction in amorphous layer thickness after Er:YAG laser treatment, both with and without the placement of dental screw implants from different manufacturers. Following bone decalcification and staining, the thickness of the amorphous layer was measured in four groups: Group A-osteotomy performed without Er:YAG laser treatment-had amorphous layer thicknesses ranging from 21.813 to 222.13 µm; Group B-osteotomy performed with Er:YAG laser treatment-had amorphous layer thicknesses ranging from 6.08 to 64.64 µm; Group C-an implant placed in the bone without laser treatment-had amorphous layer thicknesses of 5.90 to 54.52 µm; and Group D-an implant placed after bone treatment with Er:YAG laser-had amorphous layer thicknesses of 1.29 to 7.98 µm. The examination and photomicrodocumentation was performed using a LEICA DM1000 LED microscope (Germany) and LAS V 4.8 software (Leica Application Suite V4, Leica Microsystems, Germany). When comparing group A to group B and group C to D, statistically significant differences were indicated (-value = 0.000, < 0.05). The study demonstrates the synergistic effects and the possibility of integrating lasers into the conventional implantation protocol. By applying our own method of biomodification, the smear layer formed during rotary osteotomy can be reduced using Er:YAG lasers. This reduction leads to a narrower peri-implant space and improved bone-to-implant contact, facilitating accelerated osseointegration.
牙种植体的植入通常需要使用旋转技术和钻头来创建骨床。本研究探讨了将这种方法与铒钇铝石榴石(Er:YAG)激光相结合的潜在益处。对10只安乐死的家猪(Sus scrofa domestica)的颌骨进行了劈开截骨术,每只颌骨有12个下颌种植体截骨术,分为4组。为了全面评估Er:YAG激光的效果,采用组织形态学技术测量了在有和没有植入不同制造商牙种植体的情况下,Er:YAG激光治疗后无定形层厚度的减少情况。在骨脱钙和染色后,测量了四组的无定形层厚度:A组——未用Er:YAG激光治疗进行的截骨术——无定形层厚度范围为21.813至222.13μm;B组——用Er:YAG激光治疗进行的截骨术——无定形层厚度范围为6.08至64.64μm;C组——未进行激光治疗将种植体植入骨中——无定形层厚度为5.90至54.52μm;D组——用Er:YAG激光对骨进行治疗后植入种植体——无定形层厚度为1.29至7.98μm。使用徕卡DM1000 LED显微镜(德国)和LAS V 4.8软件(徕卡应用套件V4,德国徕卡微系统公司)进行检查和显微照相记录。当比较A组与B组以及C组与D组时,显示出统计学上的显著差异(P值 = 0.000,P < 0.05)。该研究证明了协同效应以及将激光整合到传统植入方案中的可能性。通过应用我们自己的生物改性方法,在旋转截骨术期间形成的涂抹层可以使用Er:YAG激光减少。这种减少导致种植体周围间隙变窄并改善骨与种植体的接触,促进加速骨整合。