Suzuki Mai, Hayashi Taiki, Hikino Takuya, Kishi Masafumi, Matsuno Takamichi, Wada Hiroaki, Kuroda Kazuyuki, Shimojima Atsushi
Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
Department of Advanced Science and Engineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
Adv Sci (Weinh). 2023 Sep;10(27):e2303655. doi: 10.1002/advs.202303655. Epub 2023 Jul 28.
Self-healing ability is crucial to increasing the lifetime and reliability of materials. In this study, spatiotemporal control of the healing of a polysiloxane material is achieved using a cleavable cage compound encapsulating a fluoride ion (F ), which triggeres the dynamic rearrangement of the siloxane (Si-O-Si) networks. A self-healing siloxane-based elastomer is prepared by cross-linking polydimethylsiloxane (PDMS) with a F -encapsulating cage-type germoxane (Ge-O-Ge) compound. This material can self-heal repeatedly under humid conditions. The F released by hydrolytic cleavage of the cage framework contributes to rejoining of the cut pieces by promoting the local rearrangement of the siloxane networks. The use of a molecular cage encapsulating a catalyst for dynamic bond rearrangement provides a new concept for designing self-healing polysiloxane materials based on integrated extrinsic and intrinsic mechanisms.
自愈能力对于提高材料的使用寿命和可靠性至关重要。在本研究中,通过使用包裹氟离子(F⁻)的可裂解笼状化合物实现了聚硅氧烷材料愈合的时空控制,该化合物触发了硅氧烷(Si-O-Si)网络的动态重排。通过将聚二甲基硅氧烷(PDMS)与包裹F⁻的笼型锗氧烷(Ge-O-Ge)化合物交联制备了一种自愈型硅氧烷基弹性体。这种材料在潮湿条件下可以反复自愈。笼状骨架水解裂解释放的F⁻通过促进硅氧烷网络的局部重排有助于切割碎片的重新结合。使用包裹用于动态键重排催化剂的分子笼为基于集成外在和内在机制设计自愈聚硅氧烷材料提供了一个新概念。