Language Science, University of California, Irvine, USA.
Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA; Computer Science, University of Rochester, Rochester, NY, USA.
Cortex. 2023 Sep;166:377-424. doi: 10.1016/j.cortex.2023.05.003. Epub 2023 Jun 19.
Speech from unfamiliar talkers can be difficult to comprehend initially. These difficulties tend to dissipate with exposure, sometimes within minutes or less. Adaptivity in response to unfamiliar input is now considered a fundamental property of speech perception, and research over the past two decades has made substantial progress in identifying its characteristics. The mechanisms underlying adaptive speech perception, however, remain unknown. Past work has attributed facilitatory effects of exposure to any one of three qualitatively different hypothesized mechanisms: (1) low-level, pre-linguistic, signal normalization, (2) changes in/selection of linguistic representations, or (3) changes in post-perceptual decision-making. Direct comparisons of these hypotheses, or combinations thereof, have been lacking. We describe a general computational framework for adaptive speech perception (ASP) that-for the first time-implements all three mechanisms. We demonstrate how the framework can be used to derive predictions for experiments on perception from the acoustic properties of the stimuli. Using this approach, we find that-at the level of data analysis presently employed by most studies in the field-the signature results of influential experimental paradigms do not distinguish between the three mechanisms. This highlights the need for a change in research practices, so that future experiments provide more informative results. We recommend specific changes to experimental paradigms and data analysis. All data and code for this study are shared via OSF, including the R markdown document that this article is generated from, and an R library that implements the models we present.
从陌生说话者那里听到的语音最初可能很难理解。这种困难通常会随着接触的增加而逐渐消失,有时只需几分钟或更短的时间。对不熟悉的输入做出适应性反应现在被认为是语音感知的一个基本特性,过去二十年的研究在确定其特征方面取得了重大进展。然而,适应语音感知的机制仍不清楚。过去的工作将接触的促进作用归因于三种假设机制中的任何一种:(1) 低水平、非语言、信号归一化,(2) 语言表示的变化/选择,或(3) 感知后决策的变化。这些假设或其组合的直接比较一直缺乏。我们描述了一个用于自适应语音感知 (ASP) 的通用计算框架,该框架首次实现了所有三种机制。我们展示了如何使用该框架根据刺激的声学特性从感知实验中推导出预测。使用这种方法,我们发现-在目前该领域大多数研究采用的数据分析水平上-有影响力的实验范式的标志性结果并不能区分这三种机制。这凸显了需要改变研究实践,以便未来的实验提供更有意义的结果。我们建议对实验范式和数据分析进行具体的更改。本研究的所有数据和代码都通过 OSF 共享,包括本文生成的 R markdown 文件,以及一个实现我们提出的模型的 R 库。