Suppr超能文献

通过未训练的方法抑制螺旋桨磁共振成像的图像模糊。

Suppressing image blurring of PROPELLER MRI via untrained method.

作者信息

Saju Gulfam, Li Zhiqiang, Mao Hui, Liu Tianming, Chang Yuchou

机构信息

Department of Computer and Information Science, University of Massachusetts Dartmouth, North Dartmouth, MA 02747 United States of America.

Department of Neuroradiology, Barrow Neurological Institute, Phoenix, AZ 85013 United States of America.

出版信息

Phys Med Biol. 2023 Aug 11;68(17). doi: 10.1088/1361-6560/acebb1.

Abstract

. Periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) used in magnetic resonance imaging (MRI) is inherently insensitive to motion artifacts but with an expense of around 60% increase in minimum scan time. An untrained deep learning method is proposed to accelerate PROPELLER MRI while suppressing image blurring.. Several reconstruction methods have been developed to accelerate PROPELLER with reduced sampling on blades. However, image quality is degraded due to blurring. Deep learning has been applied to enhance MRI reconstruction quality, and external training data are therefore needed. In addition, the distribution shift problem in deep learning also exists between the external training data and to-be-reconstructed target blade data. This paper introduces an untrained neural network (UNN) to suppress image blurring, which is applied to improve PROPELLER MRI. This network structure was then incorporated into blade-space.. The untrained method improved the blade image quality from brain MRI data. Furthermore, it enhanced the sharpness of the reconstructed image compared to PROPELLER reconstructions using parallel imaging methods and supervised learning methods using external training data. PROPELLER blade acquisition was accelerated by undersampling data with reduction factors 2, 3 and 4.. The reported UNN enhanced PROPELLER method can improve image quality by suppressing blurring. External training data are not needed to mitigate the challenge of collecting high-quality clinical data for training without affecting clinical workflow and the standard care for patients.

摘要

磁共振成像(MRI)中使用的具有增强重建功能的周期性旋转重叠平行线(PROPELLER)对运动伪影具有固有不敏感性,但最小扫描时间会增加约60%。本文提出一种未经训练的深度学习方法,在抑制图像模糊的同时加速PROPELLER MRI。已经开发了几种重建方法来在叶片上减少采样的情况下加速PROPELLER。然而,由于模糊,图像质量会下降。深度学习已被应用于提高MRI重建质量,因此需要外部训练数据。此外,深度学习中的分布偏移问题在外部训练数据和待重建的目标叶片数据之间也存在。本文引入一种未经训练的神经网络(UNN)来抑制图像模糊,将其应用于改进PROPELLER MRI。然后将这种网络结构纳入叶片空间。这种未经训练的方法提高了脑MRI数据的叶片图像质量。此外,与使用并行成像方法的PROPELLER重建和使用外部训练数据的监督学习方法相比,它增强了重建图像的清晰度。通过以2、3和4的缩减因子对数据进行欠采样来加速PROPELLER叶片采集。所报道的UNN增强PROPELLER方法可以通过抑制模糊来提高图像质量。无需外部训练数据即可应对为训练收集高质量临床数据的挑战,同时不影响临床工作流程和患者的标准护理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验